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In the secoridtrevised edition of this book we
consider the fundamental oroblems of high-soeed gas
motion. In the first Dart of tho book, consisting
of five chanters, we give the general theory of one-
dimensional and olane flows. The material in subse-
quent chanters is aDalied. In them we examine, in
sequence, the motion of gas in nozzles, diffusers,
ejectors, lattices, and turbine stages.

This book is a training aid for the course on the
fundamentals of gas dynamics for thermotechnical de-
partments of power-engineering and nolytechnical in-
stitutes.

The book can be useful for engineering and scientific
workers in laboratories and design bureaus in face 3ries.
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Preface to Second Edition

In the eight years that have elapsed from the time of first edition of this

book, various branches of gas dynamics have developed very intensively. Significant

successes were attained in solving a number of the Ynost important gas-dynamic pro-

blems in the fields of rocket technology, aviation, interior and exterior ballistics,

and industrial aerodynamics. The methods of gas dynamics have occupied a durable

place in the thermoelectric power industry.

In connection with the need for increasing the efficiency of steam and gas tur-

bines and compressoirs, vast developments have been achieved in the field of the gas

dynamics of the flow section of turbomachines.

At the same time, during the past eight years there has been additional exoer-

ience gained in teaching a number of classes in gas dynamic3 in power-engineering

and polytechnical universities.

In these circumstances lies the basis for a substantial revision of the book.

All chapters of the book, with the exception of Chapter 4, were subjected to method-

ical revision, their contents were revised substantially, and certain chapters have

been entirely rewritten.

The theory of one-dimensional isentropic motion has been expanded into independ-

ent chapter (Chaoter 2). Chapter 3 (theory of plane flow of an ideal compressible

fluid), is expanded, with a more detailed account of approximation methods of cal-

culating the influence of compressibility in subsonic flows. It includes a method

Sculting¢o~l•. elbllt



of calculating curvilinear channels.

Chapters 5-10 are virtually entirely rewritten.

In connection with the great practical imoortance of methods of calculating

the losses to friction in different apparatuses, Chapter 5 gives a new account of

the boundary layer theory during gradient flow, and the results of an experimental

investigation of laminar and turbulent layers at high speeds. In this chapter the

sections devoted to questions of gas-dynamic similarity, resistance of poorly

streamlined bodies, and motion in tubes and curvilinear channels, are expanded.

Chapter 6 gives a presentation on calculating effuser flows in nozzles. Since

we have published a specialized book, aad also for the purpose of brevity, the theory

of labyrinth seals is not expounded in this second edition. The methodology of

designing nozzles in variable regimes is expanded and made more accurate.

The theory and methods of designing diffusers and ejectors comprises an inde-

pendent chapter, Chapter 7. All sections of this chapter are based on the data of

investigation made at the Moscow Institute of Power Engineering (MEI] and other

institutes in recent years. In Chapter 7, special attention in devoted to the ducts

of exhaust turbomachines.

Chapter 8 is written on the basis of results of theoretical and experimental in-

vestigations of lattices, obtained in 1954-1959. All experimental data in this

chapter have been up-dated.

In Chapter 9 of the second edition, we discuss questions of gas motion in

turbomachine stages. Here, new methods of calculating spatial flow of gas in the

stages and certain results of experiments, obtained recently, are discussed. Ques-

tions of a variable system of stage regime, discussed in the special literature,

are omitted in this edition.

In Chapter 10 are certain recent results, attained in the area of methods of

experimental investigation of the flow sections of turbomachines. However, due to

the limited size of this book, this chapter is presented in abridged form.



Unlike in the first edition, an attempt to analyze flows of real gas (Chapters

2-4), has been made.

In revising the book, we consider the remarks in published reviews of the book,

and also those communicated t.o the author by persons using the first edition in their

work. The entire book, intended as a training aid in the course of hydrogae-dynamics

has been re-examined in accordance with changes in educational plans for heat-power

engineering departments, and also by taking into account personal experience of

teaching the course. The discussion of separate questions has boen simplified and

made more specific, misprints and errors in the first edition have been corrected.

The book, gives the results of investigations in the USSR and abroad. A signi-

ficant part of the material consists of results of works conducted by collaborators

in the Department of Steam and Gas Turbines, Moscow Institutb oZ Power Engineering

([ME1 and, in particular, the author.

During preparation of second edition the author strived to maintain general

purpose of book, oriented for the study of fundamental problems in aerodynamics of

flow section or turbomachines.

In work on the second edition, author was given much assistance by collaborators

of Department of Steam and Gas Turbines [MEI]. Chapter 5 was written in collaboration

with A. E. Zaryalkin, Chapter 8 with the participation of A. V. Gubarev, and Chapter

10 in collaboration with F. V. Kazintsev.

Author was assisted by the following collaborators in the Department of Steam

and Gas Turbines (MEIJ: Engineers G. A. Filippov, A. V. Robothev, and V. G.

Filippova, and Doe. A. N. Sherstyuk.

In reviewing and editing the book valuable comments were made by the Doctor of

Technical Sciuncee, S. G. Abramovich and Candidate of Technical Sciences, Doc. B. Ya.

Shumyatskiy.

To the indicated persons, and also to the staff of the Department and

Laboratory of Steam and Gas Turbines fMEI] the author expresses his deep gratitude.
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CHAPTER 1

FUNDAMENTAL CONCEPTS AND EQUATIONS OF GAS DYNAMICS

1-1. Flow Parameters

The state of motionless gas, as is well-known, is characterized by the pressure,

density, and temperature L.e., parameters of the state. The relationship between

parameters of the state is established in thermodynamics. For a perfect gas this

relationship is expressed in simple form by equation of state:

where L is the acceleration of the gravity force, m/sec2 ;

R is a gas constant*, having in engineering system of units the dimensionality

For air the gas constant is

fR - 29.27 kg.m/kg.deg.

For cuperheated water vapor (approximately)

R - 47.1 kg.m/1kg.deg.

Lnstead of the density p in the equation of state there may appear the specific

gravity or specific volume of gas.

* In a number of cases, it is found convenient to combine the constant magnitudes
in the equation of state (1-1) and to write it out as:

IT (W-A)
where if gR iq engineering2 sytem of Vits has the dimonsionality M2/seC2.deg.
Here ap in kg/mn, Pin kgosec •• and T in K9.

I I I I



Between the density, specific gravity and specific volume there exists the

evident relationship

where T is the specific gravity; v is the specific volume.

In a gas motion the parameters of state are not only physical, but also dynamic

characteristics of the flow. In general case, they varý in the transition from one

point of space to another, and from one moment of time to another. Consequently p,

p, and T depend on position of point and on time and should be determined as point

parameters.

At each point of a perfect gas in motion the parameters of states are associated

with each other by the equation of state (1-1), In many practical important cases,

the connection between parameters p, and T is expressed in more complex form. In

an analysis of the physiel properties of real gases sometimes it is impossible to

disregard the natural volume of molecules and forces of interaction between them.

These factors are reflected especially significantly, if the pressures of the gas

are high and# consequently, concentration of molecules in a given volume is high.

Thus, in general case of a transient flow of gas the parameters of the state

depend on the coordinates and time: p-=.p(xX, M, z, i);

p=p(x, Y. Z, 1); (1-2)
T = T(X, Y, 2. _) f

where x, y, % are coordinates of the point; t is the time.

For the solution of problem about flow of a compressible fluid, which in the

final analyais reduces to establishment of an energy interaction between stream-

lined body and the fluid (external flow round) or--in case of internal flow (tubes

[pipes] channels) - to establishment of an energy equilibrium of the flow, it is

necessary to determine kinematic picture of flow, i.e., to find speed [velocity)

field of flow. This means that equally with the relationships (1-2) there must be

found the components of speed of a particle as a function of coordinates and time.

The speed of a gas particle varies in the transition from point to point and with

* tht passage nf time,

*T:ranslation Editor's Note: The terms "speed" and "velocity" are not differ-

entiated in this monograph.

S.



Consequently, projections of the reed onto the coordinate axis can be represented

by the equationis: x , )

-- V(x, 2, , (13

where u -- projection of vector of speed a onto the x-axis, and v, w--onto the y-

and s-axeS, respectively.

Parameters of flow of a real (viscous) fluid include also yýLo#siY, which must

be determined as a parameter at a point.

.It is known that coefficient of viscosity is the ratio

P (1-4)

where% is the frictional force, pertaining to an isolated surfaces k&/m2 ;

'•" is the gradient of speed along normal to isolated surface of friction at a

given point(e!c)•

Coefficient of viscosity has dimensionality in engineering system of units

kg sec/z2. n

In a general case, for real gas the coefficient of viscosity depends on the

temperature and pressure. However, the dependence on pressure in wide range of the

pressure changes is found to be very insignificant and can be ignored. Thus, coeffic-

ient of viscosity can be expressed in a dependence only on the temperature. Corre-

snonding formulas for different gases are established experimentally.

We note that law of friction in games, expressed by formula (1-4), belongs to

Newton and is valid only for laminar flows. In turbulent modes of flow, coefficient

of friction acquires completely new content in accordance with others, with a rign-

ificantly more complex mechanism of the viscosity.

For solving the above-indicated fundamental problem it is necessary to determine

u, v and w, and also p. p and T as functions of the coordinates and time. Henceforth

there will be analyzed only steady flows of gas and the enumerated parameters of flow

should be determined only in relation to the coordinates x, y and a.



For this purpose, we shall set up six fundamental equations: equations

of momentum in projections onto coordinate axis, equation of conservation of mass,

equation of conservation of energy and the equation of state.

.1-2. Certain Fundamental Conceots of Aero m Ianics

Before we proceed in deriving the fundamental equations of motion, we shall

dwell on certain concepts of aerohydromechanics, necessary for the discussions

henceforth.

Let us assume in moving fluid a number of points, each of which lies in sense

of the speed vector

Fig. 1-1. Diagram for determining
lines of flow.

of the preceding point. By decreasing the distance between neighboring points down

to sero and drawing through these points a line, we obtain a line of flow. For

each moment of time, the speed vectors will be tangent to this line. Consequently,

motion of fluid particles at a given moment of time occurs along a line of flow.

If the motion in transient, than, obviously, the speed at point A at the follow-

ing moment of time will differ from c1 in magnitude and direction (Fig. 1-1). As

a result the line of flow will occupy a new position in space. It follow$ from

this that in a transient motion the lines of flow change their shape and position

in space.

*in Sec. 1-2 very briefly there are discussed certain basic concents of

aerohydromechanic , which are encountered in special chapters of the book.

7



For a steady motion the magnitude and sense of a vector of speed do not vary

in time; in this case, the lines of flow maintain a constant shape and position in

'spaces

On the line :f flow e (Fig. 1-2) ws isolate the elementary section do and wil1

project it onto the coordinate axis (sectors dx, dy, dz). We shall find the angles

between element ds and vector of speed Twith coordinate axes:
dx

:i ~~C M ( XS) = - d s
c ds

dy.w de'

Hence, we obtain: dx . d_ .. ds
Si U W

Consequently, differential equation of the lines of flow has the form:Sd_• •_•_= dz(1•

N W

We shall isolate in the moving fluid a certain infinitesimally amall closed

contour, through each point of which passes a line of flow (Fig. 1-3). The totality

of all lines of flow will form a certain clused surface a tube of flow. The fluid,

moving inside the tube of flow, is called an elementary flow.

SI •- - ---------. •

0 - OL ' /L ..........--

do

Fig. 1-2. Diagram for deriving differential
equation of lines of flow.



In returning to the concept of a line of flow, we note that in a steady motion,

it coincides with trajectory of particle. The trajectory is a line, expressing the

path made in space by the particle for a certain time interval. The line of flow

is an instantaneous line, along which at a given moment of time the aggregate of

particles moves. It is obvious that only in a steady motion can these concepts

conform, since in this case, the trajecories of all particles, passing through any

one fixed point of space, will be identical

Fig. 1-3. Diagram for determining the
tube of flow and elementary flow.

and, consequently, at each moment of time all particles, that lie on trajectory,

will generate also a line of flow.

In the general case, the motion a fluid particle is complex. Equally with the

translatory motion along certain trajectory the particle may rotate with respect

to its oWn axds and in process of this motion is deformmd.

Owing to the nonidentical speeds on different edges the particle experiences a

linear deformation and shearing strain or shear. If at initial moment of motion

the particle had the shape of a parallelepiped, then with the passage of time as the

result of deformation, its shape changes. In case of a compressible fluid

also the volume of particle changes.

In turning to Fig. 1-4, we shall analyze the rotation and deformation of one

I I



of the edges of the paraflelpiped shown in Fig. 1-2. It a point D (Fig. 1-4) pr'-
, . .-- Oud

Jection of speed onto the x-axie will be u, then at point A it will be u + .d@

Under the effect of the difference of speeds at these points, equal to 6a the edge

A A, : ' ,

Fig. 1-4. Deformation of edges of
particle of fluid in process of motion.

DA wlln be rotated by certain angle do,, after being tra sferred with respect to

point D for an element of time dt to the position DA. * he magnitude of the sector

A 1 is determined by the fomula

During the considered element of time, point D' will be displaced along the y-

axis by magnitude

dxdt.

Here, the edges DA and DD' will be rotated by small angles do1 and de2 , which

are determined by the evident equations:

and
A,-.. zuso Kd' au dt.

The considered disolacements of the edges DA and DD' are caused by the rotation

of the plane fluid element (edges of parallelpiped) and also by its deformation.

/0



We note that if edge only was deformed, without rotation, then the edges DA and DD

would be rotated by identical angle toward each other or in opposite directions.

Conversely, if the edge completed only a rotary motion (as an absolutely solid body),

then the edges DA and DD' would be rotated by an identical angle in one direction.

The motion of the element in the general Case can be considered as the sum of
determined

deformational and rotational motions and thus there can be/the angles 'd 1 and d4 2 .

By assuming that as a result of rotation (counter clockwise) the edges DA and DD'

were rotated by an angle d7 , .-1 as a 2'esult of deformation - complementarily

by angle d4 P we find:
dg =dp -- d*(;

d -ol + d(.

From these two equations We obtain:

2dT == d., - del.

The angular velocity of rotation of -the edge will be equal to:

tL. I de%_de%)Sdt i(WT Wi"dd,, ;,

After substituting values of the derivatives-dl and we find the angular
dt dl'

velocity of rotation of edge in such a form:

aawhere. is the vector component of angular velocity of rotation, parallel to the z-
s

axis (subscript z indicates direction of axis, relative to which the rotation takes

place). We note that (0) is angular velocity of rotation of bisector of angle at

point D. Analogous considerations result in the conclusion that the angular velocity

of rotation of the two other edges, located in planes xoz and yoz, are expressed in

terms of respective values of the partial derivatives o!, " " " where the ro-ds• ýX' T-e " WO eeth o

tation of each edge of the parallelepiped is determined by two angular velocities.

Thus, equations for all three vector components of angular velocity of rotation

//

I II



will have the form:

Equations (1-6) express vector ocanponents of angular velocity of rotation of a

fluid particle •, magnitude of which is determined as the geometric sum of ", "UU

and %:

M=u-+wLO~ (1-6)

Formulas (1-6) determine in differential form the relationship between
componmnts of angular velocity of rotation and of speed of trane2ational motion.

Rotation of particle around the axes, passing through the particle is called

vortex motion. Experience shows that in all cases of motion of a real (viscous)

fluid the entire field of flow or a portion of it is vortical. In those regions of

the flow, where the vortex motion of the particles is absent, angular velocity of

the rotation is equal to zero (w - 0). In these regions, particles of the fluid

may move along trajectories of any form, by being deformed in this connection but

by not being rotated relative to their axes.

If in a particular case, atw " 0 trajectories of the particles are closed

curves, then such a motion will be a particular case of culator tion. It

should be emphasized that in such a motion the particles realize a rotation around

a certain axis, located outside the trajectory, but are not rotated with respect

to their own axes.

Concepts of vortex and circulatory motions of a fluid play a major role in

hydroechanics. In this connection, we shall dwell on one very important character-

istic of the flow--the circulto of speed. Let us consider still another example

of circulatory flow. In the flow around an asymmetric wing profile (Fig. 1-5) by a
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two-dimensional parallel flow, the lnes0

of flow in the region of flow along wing

are distorted, since the wing disturbs the

#wwm flow. The character of disturbance, intro-

duced by wing in the flow, can be explained

by determining speed at different poinLs of

- of field along the wing. In comparing local

values of the speeds with speed of incident
Fig. 1-5. Scheme of flow
around wing profile, flow, it is readily established that the
KEY: (a) Circulatory flow
along wing. flow along the wing can be presented as the

sum of translational undisturbed flow and flow along the closed trajectories. In-

tensity of flow along the wing can be characterized by the magnitude of circulation of

speed, which is determined by the equation

r ==fcdn, (1-8)

where c 1 is the projection of vector of speed onto direction of element of contour 1.

In a general case an arbitrarily selected contour I may not to coincide with

line of flow of circulatory flow.

Formula (1-8) can be written in such a form:

r =fc Cos (c7?) dl. (1-9)

Thus, circulatory motion can be called that motion, at which the circulation

of speed is different from zero. If r - o, then the motion is called noncirculatory.*

In calculating the circulation of speed by formula (1-9) it is necessary to

apree on direction of the integration around the contour. A positive direction

*In turning to formula (1-9), we see that expression for circulation of integral

is reminiscent of the well-known equation of work of force vector. This external
analogy makes it possible to understand the mechanical sense of circulation (product
of speed by the length of trajectory) and gives the basis of arbitrarily calling the
magnitude r the work of vector of the speed.

@'



of the circulation, as a rule, is assumed that direction, at which the enclosed

region of flow within contour remains to the right (Fig. 1-5).

The concept of circulation is very widely used in investigating vortex motions

of a gas. In the theory of vortex motion there has been proven a number of fundamental

theorems associating the circulation integral with fundamental characteristics of

a vortex. We shall dwell first of all on the basic concepts of vortex motion: vortex

line, vortex tube and vortex string.

These concepts closely agree with the presented above concepts of a line of

flow, a tube of flow and an elementary flow.

/M/

a, 0v

dF1

Fig. 1-6. Vortex tube and vortex filament.

Vortex line is that line in a flow, at each point of which the sense of the vector

of the angular velocity coincides with the direction of tangent to this line. We

remember that the vector of angular velocity is directed perpendicularly to the plane

of rotation. Consequently, vortex line is the instantaneous axis of rotation of

particles of a fluid, which are located on this line.

A vortex tube is a closed surface, consisting of vortex lines, constructed in an

elementary contour (Fig. l-6,a). The fluid, filling in the vortex tube, forms a

vortex filament. If the vortex tube has a section of finite dimensions, then part-

icles, filling it and being in rotation, will form vortex string.

Let us consider vortex filament (Fig. l-6,b). We shall draw a section normal

to the axis of the filament. The intensity or strength of the vortex filament is

characterized by the doubled product of vector of angu]Arzveovtty of rotation w by the



cross-section area of filament dF:

d i== 2.,dF.

In the general case considered section of filament may be drawn arbitrary at
a certain angle to its axis (Fig. l-6,b); then the intensity dJ is determined by

the formula

WJ== 2%dF,
wherew is the projection of vector of angular velocity onto Oirection of axis of
vortex filament:

__ m • COS 4P.

Thus, the strength of the vortex filament is detgrmined as twice the product
of area of an arbitrary section of the filament and the projection of vector w onto
the direction ofnormal with respect to selected section.

In the theory of vortex motion it is proved that the circulation integral,
along a closed contour occupying the vortex filament is equal to the strength of
vortex filament, i.e.

dl' - d = 2%dF.
For a condowM enveloping a vortex string of finite section, consisting of aninfinite number of vorbex filaments, circulation integral is determined b7 the line

integral

I- = 2§)..dF.

This expression, obtained by Stokes, makes it possible to formulate one of thebasic theorems of the vortex motion: The circulation interal a.lona closed
contour, made in a fluid is .ut tm of the intensities of the vortices.
""eping the _contour if this contour k means of continuous deformation can

yontract to a Point, not xoina out bey ond limits of the fluid. If the contourenvelopes solid body (for example, profile of blade)., then it Is impossible to use
the considered theorem in this case, since the contour can not contract to a point
not going beyond the limits of the fluid.

" ~I;



However if the closed contour is drawn as in shown in Fig. 1-7 (contour ABCDA),

then according to Stoke's equation we obtain:

I'AMPCA:== "As + 1r8i + I'CO + "Dj)A 2§:%,dF,
s ince "• -- 'DA W "AU 2w dF 4. "1C.

A

Fig. 1-7. Diagram for
determining circulation
integral along closed
contour, enveloping the
profile.

Stoke's formula leads to the conclusion that the core of a linear vortex of

constant section is rotated$ as a solid body, with a constant angular velocity.

Actually, on the basis of the indicated theorem for a linear infinitely long vortex

it is possible to write out that the circulation along the contour, enveloping the

vortex, -r 2WF - const.

At F - const at an arbitrary point of vortex core " - const. The linear

linear speed in core will be: C•= t,

where r is the radius of considered point.

Consequently, distribution of speeds in field of the vortex will be linear. On

external surface of core speed has a maximum value:

Ce MAX

(r 0 is the radius of vortex).

In hydromechanics also the theorem of the invariability of circulation in time

in art ideal inviscid fluid (theorem of Thompson) is proven.

According to Thompeon's theorem for ideal fluid outside a vortex the circulation

maintains a constant value along any contour, enveloping the vortex. The

II



circulatory flow around an infinitely long line vortex (outside vortex) has a

hyperbolic field of speeds (Fig. 1-8), since

I r

and
04, Nis re r

It is readilyseen that in accordance with Thompson's theorem in an ideal

fluid a rotary vortex motion of the particles cannot appear or disappear. This

also is physically intelligible,

Fig. 1-8. Field of speeds in/ vortex core and in external flow.

KEY: (a) CU mm; (b) Vortex core.

since in such liquid there is absent mechanism of transfer of rotation and stag-

nation. /
By observing the flow of real viscous fluid, it is possible to point out a

large nwnber of examples of the generation and attenuation of vortices. In this

connection condition of constancy of circulation, which is most important property

of motion of an ideal fluid, is not maintained.

Differences in properties of ideal and real fluids can be traced with an analy-

sis of the spectrum of asymmetric flow around the body. If trailing edge of body

is made sharp (body of wing profile), then a continuous flow around such an edge

by an ideal fluid must result in a tangential discontinuity beyond the profile

(Fig. 1-9). In a real viscous fluid the presence of such a discontinuity risults

in the flow during descent from the trailing edge being whirled (Fig. l-9,b).

Thus, the .genesis of vortices, and consequently, also the circulation around

S a profile is explained by the influence of viscosity.
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•ig. 1-9. Vortex formation during descent of flow

from wing profile.

At the initial mombnt of time flow along the wing is without circulation. At the

point descent by virtue of the property of viscosity there is generated an initial

vortex (Fig. l-9,b), which creates a circulation. Experience shows that with a

not very largo asymmetry this vortex generates along the trailing edge. The corre-

sponding condition in the flow of an ideal fluid, according to which the point of

descent should be on the trailing edge, is called the Zhukovskiy-Chaplygin postulate:

in a continuous asymetric flow round a profile k an ideal fluid around i there

will form that circulation r', which assumes a descent of flow from the trailing e4ge.

This condition, formulated by N. Ye. Zhukovskiy and S. A. ChapOySin, makes it

possible to calculate the circulation r and at the same time the wing lift.

1-3. Eguation of Continuity

We shall isolate in a moving gas an elementary volume in the form of a parallel-

epiped (Fig. 1-10) and shall write out the condition of invariablility of mass in

time for this element. This condition will be) expressed in the law of conser-

vation of mass; it can be presented in the form:

=.(1-10)

where AV is the volume of element;

P is the average density of the element.

We differentiates by bearing in mind that p and'AVare variable values.

AVdFPMdA

We shall divide this equation by pAl. We obtain the equation of continuity in



I I

Fig. 1~-10. Diagram for deriving FSuler
equation.

Here the der~ivative dAV expresses the rate of change of volume ors Consequently,

rate of volumetric deformation of fluid particle. The term -- ia the rate

of the relative volwtdetricdeformation.

0In the particular case of an inecopressible fluid, when P -const the latter

equation acquires a very simple form:

dAV

which expresses the condition of constancy of volume of element: The rate of volume-

trio deformation of an element is -qual to zero. It follows from this that a part-

Ilo of an incompressible fluid is deformed in process of motion so that its volume

is kept constant.

We shall determine the magnitude of rate of relative volumetric deformation of

particle, expressing it in termU of its corresponding projections of speed .u,, v

and w.

Wethen calculate the linear deformition of particle in direction of the x-axis

(Fig. 1-10). This deformation will occur in connection with the fact that rates of

the edges ABCD and AtBiCeDI are not identical. If the rate of left edge is equal



S du

to u, then the rate of the right will be u+--dx.

We assume that within the limits of each of the considered edges of parallels-

piped, the speeds are constant. During element. of time dt the left edge ABCD

wiln be displaced by a distance udt to the right. During the same time interval the

edge A'B'C'D' will be displaced in the same direction by a distance (1+ jdx) dt.

Consequently, volume of element will change, since the speeds of these two edges

are different. After calculating absolute change of volume of particle *al'ng the

direction of x-axis, we obtain:

(u + dx) dydz dt-- d dz di= dx dydz di.

In reasoning analogously, for other tw. pairs of edges there can be a Seined

the increments involume of particle along the y-and a-axes in the following form:

•.dxdUdzdi;

ao dxdudzdt.

The total change in volume of particle is determined as the sum of these

increments..

Cons quently, rate of relative volumetric deformation is determined very

readily: I dAV Ja 0o+d

AV* i- WX + j# Iz(1-n)

since volume of element AV-=d.vdydz.

After substituting (1-n1) into the equation of continuity (1-10a), we obtain:

. b d-a a\, k (1-lOb)

We note here that entering into the equation (1-li) the direct partial deriva-

tives an O do have a specific mechanical meaning. From preceding considera-
CT. I 1, ~j 7

tions it is obvious that these derivatives determine magnitude of rate of relative

linear deformations of edges of the parallelepiped. Let us consider, for example,

linear deformation of the edge DCC0'D in direction of x-axis. Since rate of edge

CD is equal to u, and edge C'D' to u , then the elongation of edge along x



will be:

(u + Ou dxdd.

The relative elongation amounts to d di , and the rate of relative elongation

We now transform equation (1-10b). Since P - P (xy,o,t) then the total de-

rivative of density is equal to: ý?== dp -• p d1-p dz+ap

dt di

By bearing in mind that !Lx I dy dz we obtain:

After substituting I into equation (1-10b) and transforming, we shall have:

__v+60 0 (1-12)

If the motion is steady, then 0.

For an incompressible fluid (P const) there is readily obtained from equation

(1-12)1 . v

Equation (1-12) is equation of continuity of a gas flow in differential form.

This equation was 'for the first time obtained by Euler in 1659. We see that it

associates changes of the density with changes of components off the speed u, v and

w. By bearing in mind mechanical meaning of the partial derivatives , and

- expressing rates of relative linear deformation of fluid particle in the

direction of the x, y, and z axes, it is possible on the basis of the equation of

continuity to conclude that the deformation of such a particle is subject to a de-

finite law and cannot be arbitrary. For an incompressible fluid, equation (1-13)

shows that a particle of an incompressible fluid in process of motion is deformed

with the conservation of volume. For a compressible fluid a deformation of the

particle takes place with a change in the volume. In this case equation of conti-

nuity associates the changes in voltne and density of the particle.



Equatin (1-12) is written out in a rectilnear system of coordinates,* In

many cases, especially in studying processes proceeding in tw'bomachine% it is

coiweniesnt -to use the cylindrical system of coordinates.

r

Fig. 31-n. Position of point
in rectilinear and cylindrical
coordinate systemns.

The position of certain point A in cylindrical coordinates is determined by

the radius vectorors polar angle 0, and the a-axis (Fig. 1-3.1). By giving to

the indicated coordinates infiniteuimually small Increments *f, *do and d a, we shall

*isolate in the mass of the fluid the particle ADODAIBIC'DI (Fig. 1.12).

The notion of the point in the considered coordinates is given, if components

of the speed are known:

Vol di is the radial componentj
i'S

C*N~ra is the tangential component (normal to radius veocior);
da
,Tj in the axial component of the speed.

We shall compose the equation of continuity in cylindrical coordinates. We

shall calculate the rate of relative volumietric deformation of a moving fluid

particle, shown in Fig. 1-12.* The change in volume of this particle during an ele-

ment of time dt. in direction of radius vector can be expressed aS:

[ ( C + j' d~r) (r - - dr) AO - -c,rdoj dzdt

or, by discarding first terms,

rdrdzdVWl.
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hSg. 1-12. Diagram for deriving
Ruler equations in the cylindrical
system of coordinates.

The change of volume In a direction, normal to radius vector, will be.

(c, + !%jdO) - c,1 dzdrdt air+ ~jddrdO11.

Along the a-axis the volume varies by the magnitude

d - w.] rdfdrdi rdidrdn"IN.

Total change in volume for the considered time interval amounts to:

dA- d aIrdrOd.

Then the rate of the relative volumetric deformation will be:

I dAV co__ der I Oc_ do

After substituting this expression into the equation of continuity (1-10a) and

expressing the total derivative of the density in cylindricel coordinates, after

transformations finally we obtain:

Of+#(• 1 0 (pre,),.•,, ,
Mr- V.10 - -W-, + 7 0-g• -' (1-14)

1-4. 3maation of ?(omenitu

Below there will be considered the motion of gas without an internal heat ex-

change in the absence of thermal conductivity and friction.

Such a motion, of course, is an idealizedri -&real motion, in which there are

manifested trictional forces, there appear temperature gradients and there is



realized an interzn.- heav. exchange between neighboring particles.

The adopted simplified diagram of flow of a compressible fluid, however, plays

a very important role in gas dynamica, since it serves as a well-known standard In

the analysis of real processes of flow. Many practically important real cases oý

flow of gas are very close in their own properties to the considered idealized flow,

the laws or regularities of which in these cases can be used for the calculations.

With the indicated simplifications the obtainable relationship are widely used for

an analysis of physical properties of flow, without an energy exchange with the

environment.

We shall establish the basic principles to which such a schematized model of

flow is subject.

We shall isolate in a fluid flow an elementary parallelepiped. Within the

closed surface of the parallelepiped mass of fluid is confined. We shall apply to

the considered element the theorem of momentum.

The change in momentum of a mass of gas, concentrated within the surface,

occurs in a general case owing to the fact that each particle, by being displaced,

occupies with the passage of time a new position and acquires a new speed, and also

because at each point in space speed changes in time. In a steady motion the momen-

tum varies only in connection with change in position of the particles.

In accordance with the well-known theorem of mechanics a change in momentum of

the mass, enclosed in an isolated element, is equal to the momentum of external

forces. We shall formulate the equation of momentum in projections onto coordinate

axim (Fig. 1-10).

On the edge ABCD in direction of x-axis there acts the force of pressure pdyd as,

the momentum of which will be. pdydzd1.

The mcmentum of forces of pressure, acting on the edge A'B'C'D', is equal to:

-(p + OI dx) dydzd1.

rXU



We note that, in addition to the forces of pressure, on the element there may

act the body forces (gravitational, magnetic and electrostatics). Of these most

frequently it is necessary to consider gravitational force, that is gravity. For

gases *due to their relatively low density the gravity in comparison with the forces

of pressure is found to be small and it usually can be ignored.

However, in certain problems the influence of body forces should be evaluated.

We designate by X, Y and Z the projections of unit of a body force (relating to a

mass of fluid) on the coordinate axes x, y and a. Then the projections of total

body force on coordinate axes will be:

XfPdxdYdz, Ypdxdydz" and 7pdxdiyd,.

We shall introduce the momentum of body forces in projection onto the x-axi.s, equal

to lpdxdydadt. Then the total momentum is equal to the change in momentum:

XPddxdydI - -- f) dxdý,dl = pdx:tVdzdu,

where pdxdyda is the mass of element.

Consequently,

Analogous equations are obtained in the projeotion onto the y- and z-axes'

dor Lap.' (1-15b)

dwZ (-1-c)

Sbearing in mind that increments of the speed are equal to:

du _t dx+00 dy+t, tt di

dw dv -+- dy + dz + --

for projections of the acceleration onto coordinate axes we shall obtain from

@r



do_5o du (1-16)

dv ti-- A-- ti-- A, I Op (i-i6) 0
W I - w = jI +p UJX+ V j y P d

du dv Ow

The derivatives d'' ft, and ! express projections of the total acceleration of

a moving particle. Equations (1-16) show that the acceleration of a fluid element

is caused by corresponding changes of .pressure forces, acting on this element,

and by the body forces. Equations (1-16) also were obtained by Euler.

We shall formulate now equations of momentum in cylindrical coordinates. For

this purpose we shall find components of the acceleration in a new system of coordin-

ates. The total acceleration along radium vector is expressed as sum of relative

acceleration der and centripetal acceleration, 4* Consequently, the radial

acceleration is equal to: fi--e "

The total acceleration in a direction, normal to the radius vector, is composed

of the tangential acceleration ri d 6 and the Coriolis acceleration 2 dr dO i.e.;
dt dt

dO 2r dO I d(re) dr* ce*
dl' di 7i rtw

Then the equation of momentum (1-15) can be written as:

W -- T :• - - r1 0,. P O rP . ( 1- 1 7 )

I• I t
C

where R, 0 and Z are projections of the unit of body fox •e onto the coordinate axes

r, 9 and e.
!-00•an dwAfter substituting (1-17) values of the total derivatives or, d n - in

terms of partial derivatives finally we find:

at o + fl ' +e w R - I tp
-+c,oJ+7 r "p-or j (1-1710

&O I Of . + V 01O0 , "o p

r,,. , , ' I ' ' ' ,oV,

do + w C s L o+!6 Oý W pj
for ~ ~ rz jýt'W-2 - j1



1.5. �Eations of Motion jm _ Hyd"rmechanicaf Zorm.
1. S. Gromeko's Eouations.

O Equations of motion in form of Euler are general equations of mechanics.

Peculiarities of the motion of a fluid medium may be reflected by introducing

specific elements of the motion, this is, components of vortex, kinetic and potential

energy, into equations of Euler.

Components of angular velocity of rotation wx, w and w. can be directly intro-
I

duced into the equations of motion (1-16) and (l-17a). If to left-hand side of the

first of equations (1-16) we add, and then subtract 'i" and wt, then after

simple transformation we obtain:
0#-- du do -- +)w a~ au - ~ )

By bearinS in mind that +d do -- ) a/ C\

and in considering formula (1-6), we present the first of the equations of motion

(1-16) in the form: d ,0 \x I p

Analogously it is possible to transform also the two other equationsof motion.

As a result we obtain:

do + I 2p (1-18bY)O'
eI If•-'-•° e~ --2(us,,-- ts)=2--"-lee"

•-,-•tT/--2 (um,-- m,,") = 2 -- J- OPz-ec

Analogously it is possible to transform equation (l-17a) in cylindrical system

of coordinates. Components of angular velocity of rotation in this system of

coordinates are expressed by the equations:

7 gjd, dw.

I 10 owc) de,w e vr ,,) )'



By using the known formulas for the conversion of rectilinear to cylindrical

coordinates, there are readily expressed components of angular velocities -. Or and

"te. through d,, 0 and wr The angular velocitY of rotation w 'sky be expressed in

terms of the components w, * and w, on the basis of equation (1-19) since

The sense of magnitudes. 'rco and , is explained in Fig. 1-13. The component

or determines that rotation of the particles, whose axis is the radius vector

(radial vortex); component * characterizes the rotation of particles with respect

to an axis, having the shape cf a circle (annular vortex); w, is the angular velocity

of rotation about the z-axis.

We shall introduce on left side of the first equation (l-17a) the terms.• •wj,-

'-c*-0' ; then dco,
2 (120)

analogously the second and third equations (1-17a) are transformed.

The advantages of equations of momentum (1-18.)-(1-20) are evident. In dis-

tinction from equations of Euler they contain in explicit form magnitudes, character-

iuing peculiarities of the motion of a fluid - a readily deformable medium. These

equations include components of angular velocity of rotation of the particles, i.e.,

terms, characterizing vortex motion of the fluid, the kinetic energy and potential

energy of the pressure, and also potential energy of the body forces.

The introduction of these magnitudes considerably simplifies analysis of many

complex forms of motion of fluid and, in particular, facilitates the investigation

: "of certain properties of flow in the flow

.r -,part of turbomachines.

In certain particular cases equations

(1-18) or (1-20) are readily integrated.

Fig. 1-13. Diagram for determining com- Fo•r this purpose to the equations of motions
pongnts Qf vortn the cylindricalsystem of cooran ae, there can be added an even simpler



and more graphic form, by introducing a certain function of the pressure

p.(1-2)

In addition, influence of body forces is evaluated by means of introducing the

potential function U, whose partial derivatives by coordinates express projections

of the acceleration of body forces onto the coordinate axes:
I 6au Y=-u; Z Ou

xY=-•~Y; z=-•. (1-22)

Then equations (1-18) acquire the form:

it- +s +2 +1 (1-23)

+ (-t + U + P) 2 (wn% -UU,,);

di 2
+ +_ U- + -P,. 2 (a -- v ).

Equations (1-23) were obtained by Kazan University Professor I. S. Gromeko

in 1881.

*For a ste1A 0oinct v

after multipl.7ing both sides of equation (1-23) respectively by dx, dy and dz Ahd

'also. samation we readily obtain
dx ddzg

-d('.+U+P)=2 + U (1-24)

The determinant (1-24) is equal to zero in the following particular cases:

a) in the absence of. vortices in a fluid, i.e., when
es 0%- .,=

b) under the condition •X.. dy d•.

a e) under the condition

The conditions "b" and "c" are differential equations of the lines of flow.

and vortex lines, respectively [see equation (1-5)); consequently, according

I I --I-I I-I



"to oonditiOns "b" and "e" the determinant (1-24) is equal to zero for the lines of

flow and the vortex lines;

d) at "S~~ us5 =a; O

or (1-25)

In all enumerated cases from (1-24) we obtain:

or after integration 
(+u+

~+ U + P~ =const. (1-26)

Integral (1-26) is the equation of energy for a flow, iLe., it expresses energr

balance of a fluid particle: the sum of kinetic and potential energy,9 i.e.,total

energy of particle :is a constant Magnitude. I t should be remembered that the

function U expresses the potential energy of body forces, andP-.the potential energy

of forces of pressure. The first term in (1-26) gives the magnitude of the kinetic

energy of a fluid part.€.cle. All the indicated components of the total energy relate

to the mass o:C fluid flowing per socond.

Despite the fact that the integral (1-26) has an identical form for all the

consiLdered cases, itb meaning and region of application are different depending upon

conditions for which the integral was obtained,

For the steady motion of a fluid wit~hout vortices (case "a"t) integral (1-26) is

valid for all points of the flow.

In fulfilling conditions "b" or "e" the total energy of particle is kept constant

only along a line of flow or vortex line respectively. In the trannition from one

line of flow to another or from one vortex lin(i to a neighboring vortex line the

mikpitude of constant on the right side of (1-26) may change.

The condition "d" of the proportionality of linear and angular velocities (1-25)

results in the integral (1-26), i.e., the constancy of the total energy of a fluid

particle, valid for all points of the flow. Consequently, in the considered



particular case of vortex motion the total energy is kept constant for all vortex

lines. A peculiarity of this type of motion is the circumstance that each particle

0 revolves around the axis, along which it moves. Actually, condition (1-25) design-

ates that the senses of the vectors of linear and angular velocities cow•Unido, since

proportionality of these vectors indicates that these vectors are oriented at iden

tical angles to the axes of the coordinates. In the considered motion the lines of

flow and vortex lines coincide. We note that in all cases under study during an

adiabatic flow at points, associated between each other by the integral (1-26), the

entropy remains constant.

Integral (1-26) may be transformed for the practically important case, when of

the body forces only the force of gravity acts; in this connection

X=Y=O; Z=-g

(the x-axis is directed vertically upward).

Consequently, /
aA-g&ndU-/g."

After substituting these magnitudes equation (1-26) acquires thr form:

_ +,+ L_=const. /(1-27)

For an incompressible fluid ( P - const) we find:

S+ + =const. (1-28)
"T

The last equation was obtained by D. Bernoulli. Magnitude z In this equation

characterizes potential energy of location caused in the uniform field of the

Earth's gravitation by the motion of a fluid particle, and is called

the leveling height. Magnitude -- is the potential energr of pressure (pies%%otric
ce1

height), and 4 is the kinetic energy; all texms of equation (1-26) portain to the

weight per second of the flowing fluid.

0|
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CHAPTER 2

ONE-DI)GNSIONAL MOTION OF GAS

A significant number of technical problems in gas dynamics can be solved by

assuming the motion as one-dimensional,$ i.e., a motion, in which a3. parameters of

flow vary only in one direction. To these conditions corresponds a flow of Sao along

slightly distorted streamlines or in tubes of flow*

A. one-dimensional, it is poiusible to consider flow of gas In a tube with

slightly varying cross-section ar.~d a small, curvature of axis.* In a number or cases,

results of investigation of one-dimensional flow can be applied also to flows with

nonuniform distribution of parameters by section.

2-1. Fundamental Equaions of a One-Dime nslýonal Flow. Speed of Sound.

For obtaining fundamental equations of a one-dimensional motion let us consider

the flow of gas in a tube of flow. The direction of axis is selected so that it

coincides with the axis of tube (Fig. 2-1). We shall use first equation of system

(1-16). Iq disregarding for a gas the influence of body forces, we assume

X=Y=Z0O.
By bearing in mind that for considered one-dimensional flow u - co v - w1 0

and by converting in equation (1-16) to a total derivative, we shall obtain:

six (2-1)

or cdc 0.
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The equation for change in momentum (equation of momentum) (2-1.) is valid

only for those flows, in which there are absent frictional forces, i.e., for reversi-

ble flows. It is readily shown that in this case if the system is adiabatic, the

change in parameters of state of a perfect gas is subject to the isentropic law:

f• nt. (2-2)

It should be noted that by formulating the arrangement of the process of flow,

by considering that the flow is continuous, isolated energywise and frictionless

we thereby determine itt, '!.sentropicity, because in such a flow irreversible trans-

formations of the mechanical energy into heat are lacking and, consequently, the

entropyr of flow does not change. Therefore, we can directly integrate equation

(2-1), by assuming evident the oormection (2-2),

Actually after integrating equation (2-1) and bearing in mind (2-2), we obtain:

j~cd+S'~-+Cfl~k ~(2-3)

=9-+L__ T = const.

This equation, known as Bernoulli_'Is e uation for, a compressible fluid, expresses

the principle of conservation of eneriy for an adiabatic flow. After a simple

substitution A p = I

it will be transformed to the form:

i + const. (2-4)

Here the enthalpy of the gas i and heat capacity of gas at constant pressure

Op are related to a mass unit and are measured in mechanical units.*

To the equation of energy (2-4) there can be given a simple gas kinetic inter-

pretation. The term c in this equation expresses the energy of directed motion of

particles and the enthalpy t, proportional to the temperature, determines the energy

*In engineering thermodynamics the internal energy, enthalpy Ind heat capacity

usually are expressed in thermal units. Here i(kilocalorie/kG) - - i(m 2/sec 2 ),
et cetera, where A is the heat equivalent of mechanical work. g
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of motion of molecules. Consequently, equation (2-4) expresses fact of mutual trine-

formation of energy of the directed motion of particles and thermal energy.

Thus, we have established that with an isentropic flow of gas, the integral of

equation of change in momentum coincides with equation of energy.

It should be noted that equations (2-3) and (2-4) can be directly obtained also

from integral (1-26), written out for a compressible fluid (gas). 1y disregarding

the influence of body forces, i.e.0 considering U - 0, form (1-26) there readily is

obtained equation (2-3), by assuming a connection between p and p on basis of

formula (2-2).

The equation of continuity for a one-dimensional steady flow can be obtained,

by considering motion of gas in a tube of flow of variable section (Fig. 2-1). In

assuming that across the section of the stream, the parameters of flow do not change,

we consider the part of flow, included between sections 1-1 and 2-2. By definition

a tube of flow is a closed surface, formed by streamlines. /!
*The equation of energy readily c'.n be obtained om the first lAw of thermo-

dynamics, written out for fluid a flow:
II el

Qa- dl + d + dLr.

where dQ is the specific quantity of heat, transmitted to a gas (or diverted from
gas) in an elementary process;

do• is the specific work, done by the gas.
Fo5 an energy-wise isolated flow (dQ - dT - 0) after integration, we obtain

(2-4).

"•Equation (2-4) is valid also for adiabatic flows (in presence of friction),
accompanied by an increase in entropy. In this case energy balance of the particle
must be supplemented by two terms: one which takes in consideration the work of
resisting forces, and other, which expresses the increase of heat in gas flow. These
two terms are identical in magnitude, but have opposite signs and therefore mutually
cancel each other. This means that in such an isolated system, the work of forces
of friction does not change the total energy of a particle; there varies only the
relationship between energy of directed motion and thermal energy. The flow of gas
is irreversible, a portion of the mechanical energy is irreversibly transformed
into heat.

0



The gas particles do not penetrate through its lateral surface, since the vectors

of the speed are tangent to this surface. For 1 sec through section 1-1 inside

S the considered part of tube there flows in a mass of gas, equal to PiclF1 ; flowing

out through section 2-2, is a mass of gas equal to P2 c2 F2 . Under the condition of

continuity of flow these quantities should be identical, i.e.,

ACIA, = ?P&C ,. (2-5)

or a=pcF----const, .(2-5a)

where m is the mass of gas per second.

Fig. 2-1. Tube of flow

(str.amtube).

The equation of continuity can be obtained in differential form. After

logarithmization and differentiation under sign of logarithm formula (2-5a) acquires

the form:

9 dco. (2-6)

We note that for stream of constant section, the equation of continuity (2-5)

gives;

PC= X =const. (.7

The product pac determines the specific flow rate of a mass of Las. in a

Riven station (flow rate of a mass through unit of area of section).

Expression (2-7) for specific flow rate can also be obtained directly from

the differential equation of continuity (1.-12) for a three-dimensional flow by

assuming u - c and v - w 0. Then, by assuming the motion steady and converting

to a total derivative, we shall obtain: !- - 0.
dx
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Hence, by integrating, we obtain (2-7). It is obvious that by the sense of

derivation the equation of continuity (1-12) in a transition to a one-di.ensional

flow, can give only the condition p - constc .

For a one-disensional flow of an incompressible fluid (Pm const) equation of

continuity (2-5) takes the form:

CIF, t-- .

or cF- const.

Formula (2-8) expresses condition of constancy of the volumetric flow rate of

fluid per seconds flowing through the sections of tube F Iand F 2 This formula is

applicable to gas flows only in those cases, when in considered section of tube

1-2 the change in density can be disregarded. For gases this condition is fulfill-

ed if the momentum is small in comparison with the speed of sound.

Speed of 'sound, as is known, is called the speed of propagation of small per-

turbation@ in a physical medium. The speed of sound is especially very important

in analying processes of flow of a compressible fluid. Yany properties of the flows

including also the character of variation of parameters of flow along a tube of

given shape, under different conditions of interaction with the environment consid-

erably depend on the circumstance9 within what limits the ratios of the speed to

the speed of sound lies.

Influence of compressibility in a gas flow becomes perceptible in that case,

when, asa result of a change in pressure, the cubic deformation of particle and

change in speed of the flows are commensurable.

We shall use the equation of continuity of a one-dimensional flow, after having

written it in the form: dAhVtd n,
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Swhere -•- is the relative change of volume of the element 1-2 (Fig. 2-1) trans-

ferred to a new position 1'-2'.

Er multiplying this equality by dp, after transformations we obtain:i

dp-p .p d•7 .

From the equation of momentum (2-1) it follows:

dp -- pcdc.

By comparing the two last expressions, we obtain:
dAV _ o dt

(The subscript a attests to the isentropicity of the process).

We designate
d# " as (2-9 )

then dAV el de

Thus, we see that if a and a are magnitudes of one order, then the relative

cubic deformation of the element will be of sum order, as also the change of speed.

At I < 1 even significant changes in the speed do not result in large changes in

the volue of the particles.

From courses in physics it is known that the magnitude a. determined by for-

o U (2-9, Is the speed of propagation of waves of small disturbance. A character-

tstic ezample of such waves is sound waves.

For a perfect gao the speed of sound is equal to:

(2-9a)

For air (k 1.4) speed of the propagation of sonmd

a -2.I 20 . (2-9b)

Consequently,, h MgA of sound Aa I perfect aEl d onds R tM h p.hyical

properties and the absolute temperature of the Ma. This conclusion is in full

* agreement with gas kinetics concepts on the process of propagation of small

JI7



disturbances in a medium, consisting of moving molecules. The speed of propa-

gation of a disturbance should depend on the speed of motion of

molecules, which is determined by the temperature. It is well known that the

average sreed of the motion of molecules of a gas is close to the speed of sound.

In this connection, it is necessary to emphasize that ratio of squares of the
c2

s5eeds ( ) is a measure of the ratio of the average kinetic energy of directed

motion to the average kinetic energy of random motion of the particles.

2-2. Different Forms of the fEnergy Equation.

The Bernoulli equation establishes the energy balance of an adiabatic flow of

gas in a tube of flow. Above we beccme acquainted with two forms of thin equation:

(2-3) and (2-4).

The constant on the right side of the equation of energy can be expressed

variously. By applying this equation to two sections of a tube of flow, in one of

which the speed decreases to zero and, consequently, flow is stagnatesdequations

(2-3) and (2-4) can be written in the following form:

+ (2-10)
k k iý._ _ r e

where i 0 c p c oT is the enthalpy of the stagnated flow;

PO , p0 o, o are parameters of stagnated flow or oarameters of stagnation.

As a result of total stagnation of a flow all the kinetic energy of directed

motion changes into heat energy. let us note that with a total stagnation of the

flow of a perfect gas, temperature of stagnation To, the same as the enthalpy, can

have only one fully definite value, while the pressure of stagnation Poo and the

density p0 can assume any values where the ratio Lo remains constant.
Po

Parameters of the stagnation are very important in analyzing both the theoret-

ical and exnerimental problems of gas dynamnc . 0

./I



Thus, we see that the l.ght-hand side of the equation of energy, expressing

total energy of a particle, ,.an be presented in terms of parameters of stagnation.

0Suppose we consider othea' possible forms of the equatioa of energy.

We remember that a P'k l'

Then, equation (2-11) acquires the form:

T+5T~vC~lst.(2-22)'~~~ ~ Ont-• -- [-ost,

where ac is speed of propagation of sound in a completely stagnated medium.

If we apply the equation of energy to two sections of a tube of flow, in one

of which the pressure p decreases to bero, then the speed of flow c will tend to a

certain maximum magnitude emaj, which we call. te_ maximumsn, ,. In accordance

with considered conditions this speed corresponds to outflow of gas in a vacuum (i -

'mo; p -0 ; T 0). Consequently, right-hand side of equation (2-12) can be expressed

in terms of the maximum tpeed:

With a maximum speed of the flow, equal to. oa.. all the thermal energy of

aolecules will be converted into energy of the directed motion. A maximum speed of

flow is virtually unattainable and is known as the theoretical limit for the speed

of a gas.

One should bear in mind that with the approach of *Deed of flow to the max-

inum, the rarefaction of gas becomes very .greatand therefore to the considered

flow it is impossible to apply an equation of state of perfect gases and equation

of energy in the form known to us (2-10) or (2-11).

From formula (2-12) there can be obtained still one expression for the constant

on the right-hand side of the equation of energy.

According to (2-12) along axis of a tube of flow with an increase in the speed

a, the speed of sound a falls. Completely obvious are the limit, of the possible

0 variations of o and at speed of flow can change from zero to e@ax, and the speedI 39
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of sound--from ao to sero. In one of the sections of the tube of flow, the speed

of the gas motion o may become equal to the local speed of sound, ie.,

Here equation (2-12) will be written as:
a'2  a• h A±I

Consequently, the constant on the right-hand side of equation of energy can

be expressed by the speed a and the equation of energy then acquires the form:

Sa! (2414)

A speed of flow# equal to local speed of sound a is called the critical 8e.

From the equation of energy, written in different forms, it follows that between

characteristic speeds and parameters of stagnation there exists a definite

connection.

By equating the right-hand sides of equations (2-10)-(2-14), we can obtain

such a relationship:

k Tsr,. a4 a2 k+1 2-~-, i- _-

Hence, we obtain an expression for the characteristic speeds of flow through

parameters of stagnation.

Thus, the maximum speed will equal:

_, =-.J: J~/ 1 (2-16)Cmair V. F -- I

Critical speed

a, T r~r.(2-17)
Besides,

." F I(2-16a)

and

a. a,,24a

4'O
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From formulas (2-16) and (2-17) it follows:

. ~ T/ + T (2-18)

Thus1 we see that the maximum and critical speeds depend on physical properties

of gas (coefficient of constant entropy k) and the temperature of stagnation.

For air at k---.4a&A--..287.1 ."'/$.'..o
a. t 18,311f. ,, S0C.

For superheated water vapor at k - 1.3 and I • 462.0 .Q'/•s/c•. oC
Sa. 22.8 /7

By formula (2-18) we obtain:

for air . --- 2.45:

for superheated water vapor .SL. - 2077.

2-3. l~ow Parameters an Arbitrary Section of A Tub of Flow (Streamtube)

By using equation of energy, we express parameters of flow in certain section

of a tube of flow . terms of parameters of the stagnation and speed in this s~motion.

For this purpo e,, after transforming formula (2-14). we obtain:

dividin al (2-14a)

= -T

By divlding all the terms by 02, we obtain:

+_1._+_ a? fw(2-.14b)

Ie introduce the following designations for the dimensionless speads:

S•1(2-19)

*TRANSLATION EDITOR'S NOTE: In this monograph it in assumed that the terms

"tube of flow" and '"treamtube" are interchangeable.
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then equation (2-14b) will be have the form

I = k •+l (2-20)
T + IT ---• 4-P"-

Equation (2-20) establishes connection between dimensionless speeds. After

simple transformations we obtain:
2 I 2 ',

k-I k -- ,"i== I (2-21)

We now use formula (2-10). We express the temperature of stagnation in such

a form:

=r T + ;. (2-11a)

We divide left and right side by T and determine the ratio of temperatures:0

T o 1

since =," k+I " C'

T j- AL-Ia31

then -1 -- T1 (2-22)

Besides, after determining from (2-10a) the ratio

and after having substituted on the right-hand side

we obtain: 
Fk4

Y + Me (2-23 )

For an isontropic flow

h t (2-24)

In using formulas (2-22) and (2-23) it is possible to present the relative

pressure and density of the gas in an arbitrary section of a tube of flow depending

upon dimensionless speeds M, A and t (Table 2-i).

Thus, by knowing the parameters of the total stagnation of flow and one of

dimensionless speeds, by equation (2-22) and (2-23) one can determine the tempera-

ture, and by formula., presented in the Table 2.-1,--the density and pressure of the



gas in the given section of tube of flow.

From the fundamental equations there is readily obtained a connection between

parameters in two arbitrarily selected sections of a tube of flow.

From formulas (2-22) and (2-23) we express the temperature of stagnation in

such a form: 74=7 Q+ k- I)M1 T
I-2'h+!

For two sections of an isentropic flow (1-1 and 2-2) we may write out the

equation of energy for a perfect gas in such a form:

T= Tea;

then W -- -- I

T + 2 ' 2 (2-25)
k-~ 1  k- I I

l+--£- ,2, I- -[ E '-1

In the concept of an isentropic flow, by using relationship (2-24), we obtain

formulas for ratios of the pressures and densities (Table 2-1).

There also in readily obtalned the ratio of the absolute speeds in these

3eection, A

el M~A1  At, V Fit

or after substitution T2 /T 1 from (2-25):
:, '+-•(2-26)

Since at T0 - const, the speeds a*, ,a and c max are constant, then

We note that equations (2-22)-(2-26) and the formulas, presented in Table

2-1, are modifications of the equation of energy, obtained by means of transforming

equation (2-10) and introducing diminsionllsss speeds.

In practical calculations of gas flows, there can be usid any form of the

equation of energy and parameters p, p and T can be expressed in terms of any of

the diMensicn-ess speeds M, A , t .

However, depending upon considered problem, it is found expedient to apply



Table 2-1

1) Ratio of densities; 2) Ratio of pressures.

I a

,. -,-• •,)•t ,. •---t I''

kmk

l ~''

I k

-••-i •, k-I a-T•,
I I+ +

+ &2
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a dimensionless speed, which assures a maximum simp~lcity of the final equations.

If in considered region, the speeds are less than the critical, i.e. if
Oc c <a.,

then 0' Mq• ;

If the spoeds.of flow are higher than the critical, I .e.,)

I '.then I• •

M

In the first case, flow is called i or s r , but ii the second--

iiaersonig or ari tical. Consequently, value of dImsniozuless speeds

divides region of flows with subsonic (subaritical) speeds and with supersonic

(supercritical) speeds. Xt is possible to see that dimnsionless speds A and i

have finite limiting valueis, where the speed A 1 I at o i .n certain oases is

more convenient for use.

It must be emphasized that the dimensionless speeds have a specific phyuioal

Maning.

In Sec. 2-2 it vse established thatedepending upon relationships between a

and a, to a greater or lesser degree there is wanifested a compresnibility of the

flow and, consequently, M - at each point of flow determines the degree of thea

influence of compressibility. Besides, physical velue of the Mach number is as-

certainod in eonsidering the magnitude

(since I a---2 ), whence it follows that the square of Mach number is proportional

.to the ratio of kinetic energy of flow to its potential energy at a given point.

4~i
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* ykrowing that the square of the critical speed can be expressed by the

onthalpy of'stagnation: t

it is possible to present A 2in the foll.owing formg

Thuso, the squares of dimensionless speed A. and also 1. are proportional to

the 'ratio of the kinetic energy of flow to its tot.&l energy i0

in flows of gas without an energy exchange with the *nvfronmerit. the total

onorgy'of the flow io is at each point a constant magnitude., Correspondingly,

the constants are the s~peeds a*# a. and a max$ depending only on LO (at k -cons~t).

In this case A and I give us the speed of fV )w, related to different, but constant

scales for the entire flow.

In energy nonieclated flawl "hen there takes place a heat exchange with the

*xwironment (dQ ý 0) or an exchange of mechanical work (dLT ýd 0)0 the total energy

varies from point to point. In accordance with variations of 1 the speeds &u,

a op and o . change,

It should be emphasised that formulas (2-23)s (2-24), et &%L, associating the

parameters of stagnation with the parameters of flowli (Tablm2-1). are valid aIso

for flows with an energy exchanges buts however$ in this cases connection between

parameters or stagnation, the static parameters and dimensionless npeeds, is

locals i.e., it refers only to a given point or given section of tube oft flows

where by p0 and P0 are understood the parameters of an isentropic stagnation at

the given point. These equations cannot be applied toi two different sections of

the tube, since in the section between cross sections total. energy of the flow

varies. Consequently, formulas for static parameters, indicated in Table 2-1s

anid formulas (2-25) and (2-26) for such flows are inppiabe



We note that the dimensionless speed M' is one of the basic criteria in theory

of similarity in analyzing processes of motion with high speeds *, since the re-

uistance coefficient basically depends on the ratio 0- aa

2-4. Chanits s.eed Al o ng of Flow.
The Reduced Flow Rate of Gas

We shall subject to a more detailed investigation the character of the change

of speed along tube of flow. For this purpose, we shall use equations of a one-

dimensional flow: cdc.F =. O;

0.

Simple transformations make It possible to obtain:

Ilene* 
0

,"' , F (2-27)

After dividing both sides of the equation by a2 dx and expressing logarithmic

derivative of the speed, we obtain:

I de ,' (2-28)

After expressing by means of (2-21) M2 in terms of 2, we obtain:

S4 - - IdF (2-29)
- " Z'i- F dx

Equations (2-28) and (2-29) are differntial equations of the distribution

of speeds along axis of the tube of flow. They can be integrated, if there is

known the form of the function F(x). At the same time, these equations are very

convenient for a qualitative analysis of the change of speed of flow in tubes of

flow of different shape.

*80e Chap. 5
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Fenm equation (2-29) it follow that - 0 at

b) A (2;

ýr --- 1 -£ " "-. 1 O X;
b) a=~i. O~. W

The case "a" corresponds to a motionless gas and therefore it is of no inter-

eat. Case "bJ' which correspond to the maximum speed of flow,is entirely obvious:

at A - A a further increase of the speed is impossible. Finally, the case

"a" results in W--0 only at A 0 1. It is readily seen that at the considered

point x" x* the function P(x) has a maximum, a minimum or an Inflection point.

Consequently$ in such sections of a tube of flow the speeds also have extreme values.

From equation (2-29) it my be concluded, that the derivative of the speed

at A 1 and d? O 0. However, such a solution, signifying presence of

a discontinuity of speed is physically impossible (we analyse oontinuously the

varying motion of the gas). I

Lot us consider the qualitative picture of the flow of a gas in * tube of

flow, having in x - x* a maximum or minimum of the section (Fig. 2-2). Suppose

the function F(x) has at this point a maximum (Fig. 2-2,a).

ArA

'4 A-0

F 
•IA

i _ _ __ .

• " ~-. z '0

Fig. 2-2. Variation of speed along a tube of flow.

ofspedalnga ub



Let us assume that to the left of F(x) Fmax, the speed 2<1. Then, from (2-29) it

follows that since 2 > 0, then-k-O, i.e., speed in the tube of flow towards FdxdX max

dminishes * To the right de. 0 and L:1,- 0 the speed of flow increases.

Analogously at A > 1 we shall have to the left 4 > o and to the right 0- % 0.dx
If function F(x) has a minimum at the considered point, then to the loft of

F(x) - Fmn at A < I. and -- <0, the speed will increase, since 0 3, (Fig.2-2b).
dx

At I> there will be to the left Lk<. 0, to the right 0.

Thus, we have shown that in a maximum section of a tube of flow the subsonic

flow acquires a minimum speed, and the supersonic, a maximum, In an expanding

part of tube of flow the speed of subsonic flow drops, but in narrowing--increases,

The supersonic flow in the expanding part is accelerated, but in narrowing-is

stagnated. At any values of A at the entry the curve of speed in this case (F(z)-

SMAX ) has an extreme. There follows frci this a very important conclusions the
character of change of the need alonij tube of f i principle is different

.. - - - 1 0rnilei ifrn

fg subsonic and supersonic flows, In the first case the flow of gas from the

* qualitative aspect will conduct itself the same as the f )w of an incompressible

fluid, and in the second case the curve of speed X (x) has a character, analogous

to the curve of the sections F(x). It ts obvious that in a tube of flow, having

a maximum of section, a transition from the region of subsonic to the region of

supersonic speeds and vice versa is impossible.

In a tube of flow with a minimum of section, speed of both the subsonic, and

also of supersonic flow approaches the value A= I in the minimum section. If

speed of flow in minimum section is I= I and lA.0.,, then a transition through

the critical speeds obviously, is realized.

. - .IWe consider now the change of pressure, temperature, and density of gas in a

tube of flow. Directly from formula (2-13), et al,, it follows that, there, where

speed increases, temperature, density and pressure in an isentropic flow of gas,

decrease, and vice versa.
* 1 ' Ij

9.?



Thus, lin a narrowing stream in a subsonic flow, the temerature, pressure

and density decreacod, and in a supersonic flow, increase. In an epanding

stream the picture will be reverse.

Parameterbs corresponding to a section of tube of flow, in which X - 19 we

shall call c p. They are readily determined by formula (2-22) and

by formulas for P and - , presented in the Table 2-1, after substituting A - Is• P0  PO

,. r oe .. (2-31 )

~ Fr (2-32)

WasFt (2-33)

We see that the critical parameters depend on the physical properties of gas

(coefficient k) and on parameters of complete stagnation.

In Table 2-2 there are presented values of the relative critical parameters

(relating to corresponding parameters of stagnation) for different k coefficients,

Table 2-2. The Critical Ratios of Parameters for Different Oases

k 107 1. 4 1,33 1.3D 1.25 1.20 1.1 I 10

T. 0,7401 0,&333 0.8584 0,860010,880 0,2091 0,9292 0.9524

J--0.0-103 0.i01330 0,62W6 0.627601.624 0,62M0 0,6173 0,01341)

A 0 .48 67 0,5282. 0,5404 0,5457 0rM 0,&1)45 0,6740 0.55*11

The above-obtained fundamenal laws, or regularities, determining the

variation of parameters of flow in a tube of flow current, physically can be under-

stood from a consideration of equation of constancy of the flow rate in a tube of

flow [formula (2-?)]. By means of equation

.. 4E P' 0-

.50



* (Table 2-1) we define the ajjtiJ, LIU raJt of a gas:

rN9*=c=~aa( (2-34)
-r = pc-&l

k I

The mass flow rate per second m for each section of a tube of flow will be one

and the same. Intensity of change of density p and the speed a will be different

in subsonic and supersonic regions. In a subsonic region with an increase in c,

the density decreases more gradually than the speed increases, therefore the tube

of flow must be narrowed, section F must be diWnished. At supersonic speeds, con-

versely, a decrease in the density will be more intense than the increase in speed,

and the tube of flow will expand.

As can be seen from formula (2-34) function 2 (A) A OatX- 0 and I

and, consequently, at a certain X , has an extreme value. For determination of this

value of A , we shall differentiate (2-34)
t-6

"yo) r_--•Aa (1 - As).

It follows from this that maximum value of the specific flow rate corresponds

to X - li.e.,a critical value of speed, since d! vanishes at A -'l. Consequently,,P (2-35)

The jdgeo D]o MA is the name for the ratio

a' ~+ k I (2-36)

In Fig. 2-3 dependencies of the parameters of flow -P; -L ; and the reduced

flow rate q on the dimensionless speed (for different k) are presented.

Horet there is given the corresponding scheme of the variations of sections

of a tube of flows along the axis of which the speed continuously increases. It is

readily seen that with a maximum speed I V = , the reduced flow

rate q ---. ,e., F=coo. Physically this is intelligible, since at

,p '0 (outflow into an absolute vacuum) and P -0.

*]
L "/
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Fig. 2-3. Gas dynamic functions of a one-dimensional
isentropic flow q, P Ps. F 1.. F Ps . ja (k -~ 1.1; 1.3, 1.4).

Thus, we have established that in~ a tube of flows having a minimima section,

there may occur a transition through the critical sped, The necessary and suffi-

aient conditions for such a transition are the coniditons A 1 and d A/dx # 0 in

the minimum section. The reduced flow rate of the gas in this respect acquires a

maximum value.

If. the speed in minimum section will attain a critical value, and the second

condition (d 0) is not fulfilled, then a transition through the critical speed

will not occur. This case corresponds to the manifestation of critical, speds in

a tube of flow and is important both in the theory of the Laval nohzle and also

in problems of external flow around bodies.

2-5. Certain 0as-D ic Functions of a. One-dimensional Adiabatio Flow

Above (Sec. 2-3 and 2-4) we became acqua~inted with certain important



dimenaiori.,ar characteristics of a onedimensional flow of gas, which are expressed

in the form of simple functions of dimensionless speeds M, A , or • . These gas-

O dynamic functions play an important role in realising different gas-dynamic oalcu-

lations, and also in processing the results of the experiment.

In addition to the already known, it is simple to obtain also gas-dynamic

functions, which are encountered in transformation* of equations of conservation of

flow rate, morentum, and onergy.

B mans of the reduced flow rate q there is readily determined the total

mass flow weight rate of a gas throuigh a given section;

0wgFpc S==Fqajp,. (2-37)

or after substitution

and transformations we find,

4C, (2-38)

who"

The flow rate can be expressed also in terms of the static pressure of the

flow in a given section. For this purpose, we shall divide and multiply the right-

hand side of formula (2-38) by pt

O=SF P X= fr (2-39)

-where IM a W• r 1 -F-• (2-40)

is a now function of dimensionless speed A , depending also only on k and A ,

The equations of the rate flow in the form (2-38) and (2-39) can be used for

,calculating the adiabatic flow in an isolated system (without an energy exchange

. 'with the external medium) in the presence of friction. Actually, the condition for
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ft-he -at of the flow rate .(2-39) tot two. aitra.•J selected seauions of the

channel can be' written ir such a form:

Since for an isolated system Tr, o , then

ILO (2-41)

for channels of constant section
(2-41a)

Formulas (2-41) and (2-41a) make it possible to find the variation of pressure

of stagnationo stipulated by irreversible changes of state of the moving gas and,

in particular' losses, caused by internal frictional forces*

Analogously by means of (2-39) there can be obtained (T 0 - T02 T 0O)1

FA~IN F&Pp,1 1
whenceE

Am X6. (2-42)

or for cylindrical channel

-- "a(2-42a)

Relationships (2-42) can be used for determining the static pressure in one of

the sections of flow, if there are known the speeds in two sections ( 1Z and X2)

and the static pressure in one of them.

We shall introduce still one function, that oharacterizes pulse of flow, equal

to J=-o c.

(2-43)

In considering that

we shall rewrite (2-43a) in the form of:

'- (2-43" )



From (2-17) and (2-22) we have:
P = 9RT-=-RT, I'- -"J-•-.•-,--'

and a - A %; then equation (2-43) can be written as:

_o•+_ o(2-44)

where

(2-45)

a certain new function of the dimenstonless speed A

Equation for the pulse of gas flow (2-44) was for 'the first time obtained by

B. 3. Maselev. It is widely used in different problems and, in particular, for

calculating energy nonisolated flows (calculation of flown with admission of

removal of heat In the presence of frictional forces, calculation of sudden ex-

pending of chanmel, the process of mixins, eta.c)

The original equation of pulse (2-43a)G/
SICa

is readily transformed to another form, by using new important ftnction of the

dimensionless static pressuo /
""e.- (2-46)

2
After replacing here _ -RT and a% by formula (2-17) we shall obtain*.

P.

Consequently, pulse of flow is expressed through function v by the formula

J= a-a (1+ '- ), (2-47/)

and a connection between 4 and r is established by the relationship

- £ ~ (2.-48)

*Funotion r for the first time was oroposed by A. P. Gandel'mman and used in

works of A. A. Gukhman and A. F. Gandelesianfor the study of resistance of tubes
during an adiabatic flow of gas.
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We now use formulas (2-38) and (2-39) and replace the magnitude of the flow

rate 0 in equations (2-44) and (2-47). After simple transformations we find:

J-= k .FPq, (I- ) =Fp.q,i (2-49)

and J-- k,.Fnp (I + Z) -- pp.

(2-50)

Here 1.--- )• is the critical ratio of the pressures;

is the critical ratio of the density.

By me s of formulas (2-40) and (2-50) there is readily established a aonnectien

between gas-dynamic functions q , * and T

In certain calculations it is convenient to introduce also the functions
T•,='eq-k,.q(1• + )-(.,+ 1) 1- L-I'' (2-51)

and
Ai ke' (A51+

k-1 (2-52)

Then

J&=-FP*=•AFP. (2-53)

Function of a dimensionless static pressure r is encountered also in using

the equation of energy. We shall express from (2-14) the speed of sound:
*+ k- I o

2_4 _ -- ,I2
After dividing this equation by a&4 we obtain: .

( -k (2-54)

If we use the equation of energy in the form (2-11). it in simple to find ratio
j •l -- At -L' •.- I

of the velocity head to the static pressure p: 2P k-i P t '

After substitution of the values -N- and we shall obtain:P P

- (2-55)

* The velocity head related to the pressure of stagrnation, can be found by the

formula
, _2 pP k k - 1)

-2, WT-1(2-56)



Thus,, a number of characteristics of a one-dimensional gas flow is expressed

in the form of functions of diinnsionless speed X and the coefficient of the

isentropic process, k. The most important of the functions have been reduced to

tables of gas-dynamic function3, constructed for different constant values k

(Appendix 1). Tho use of such tables considerably simplifies gas-dynamic calcu-

lations, which accounts for the wide distribution of the tables.

At the same time an analysis of change of certain gas-dynamic functions makes

it possible to make important conclusions about properties of gas flow. Thus,

for example, in Fig. 2-4s supplementing Fig. 2-3, there are presented the functions

#, 9, A , 'Y and 1(k -. 14), The function j is shown in Fig. 2-4.

Function v monotonically diminishes with an increase of the speed A and at

1 acquires a critical value, equal [formula (2-46a)] to:

In remembering the expressi3n for critical ratio of the pressures, we readily

find: 0* 6

In turning to Fig. 2-4, it may be noted that t>.e function 'Y varies slightly

in the wide range of speeds 0 < X 4 1.5. By bearing in mind meaning of this

function [formula (2-51)), we readily come to the conclusion that with a constant

pressure of stagnation the pulse of flow weakly depends on the dimensionless

spoed at X <~ 1.5, ap -.

A- A

0 a .. , .. .. .. . .. . . 0-- - --.

Fig. 2-4. Gas-dynamic functions r, ý, a. A. Ib T of a one-dimensional
flow of gas for k 1.4.
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With a constwat static pressure, the pulse in the given sectic tensely increases

with an increase of A , since function A sharply increases from unity at A - 0

to infinity at A-* X MAX

The flow rato of a gas through a given section F varies very greatly with a

variation of A , if the static pressure is kept constant;

iN /' Iy" _

•IV

A

SFig, 2-5. Isentropic process of epn

determination of critical1 parameters for
a real gas.
KEY to b): (a) kcail/kg; (b) kg/rn2,sec;()Ae

CA MI
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this is characterized by the behavior of function d (Fig. 2-4).

In the above-presented formulas constants, depending only on k, appear.

Values of certain constants are given in Table 2-3.

Table 2-3.

, [1.61.: I,0 II11.354 01,25 1I,2111.I

I�// AM J0.?2- 0,7164 0.7011 0.0,8 0,67ii 0.667 0.4)s 0.01' 4 0.412

k i r~ 10.6124 1079 0.Tt3U ,?) 0 -n3 a 0 -70-* 1 0 1' rou3 l0.116M0.143

2-6. Peculiarities of Calculating a One-dimensional Llow o2 a Real Gas

The equation of energy (2-10) makes it possible to use extensively phase

* diagrams for calculating gas flows, which are especially important in investigating

flown of real gases, change of state of which is not subordinateid to equation

(1-1), and the heat capacity is a function of the pressure and temperature.

In the practice of calculating heat engines (steam and gas turbines, compres-

sors, et al.)most widely employed are thermal diagrams, in which along the axes of

coordinates there are plotted the temperature and entropy, or enthalpy and entropy

(T-s and i-s diagrams). Such diagrams constructed on the basis of experimental

data make it possible with sufficient accuracy to calculate the different processes

in change of state of gases, including in the region of moist vapor and near the

lim of saturation.

The T-s and i-s phase diagrams may be widely used in investigating gas flows.

Actually*, we shall express froku the equation of energy (2-10) the speed of

the flow: C (T,- ).

S



SAfter substituting i (kilocalorie/kg) we shall obtain:

In substituting values of the constanrs g and A, we find:

c=91.53 (2-10b)

Formula (2-lOb) indicates that for determining the speed of flow it in neces-

sary to know the difference between the enthalpies i 0 -- i, which readily is deter-

mined by the i-s diagram, if the parameters of complete stagnation of the gas

(pop TO) and static parameters of flow (p, T) are uioown.

In Fig. 2-5a, there is presented a portion of an i-s diagram for water vapor.

If we know any two parameters of the total stagnation (p0 and T ), then on the i-s
0

diagram there is found the point 0, which determines the state of a stagnated flow.
This point can be found also by other parameters of state (for example, io and a0).

By drawing a vertical line up to the intersection point with isobar of static

pressure p, isotherm T or the isochore v, we determine the state of a moving gas

(point 1) and first of all its enthalpy i; Ahen the speed of flow readily can be

determined by equation (2-lOb).

The difference of entLalpies Ho - l -- 1 entering in this equation is called

the isentrovic differential of the enthalpies.

Thermal diagrams can be used also for calculating irreversible flows (see

below). In this case, however, for determining the speed of flow three parameters

of state are insufficient.

In considering the ioentropic motion along a tube of flow of variable section

on an i-s diagram, there it readily found the specific flow rate of gas in different

sections c and readily constructed this magnitude, aad also other parameters

depending on the speed c (Fig. 2-5,b). The maximum of specific flow rate corresponds

to a critical section of the tube, determinate by the equation of flow rate:

CN

V .

;0



Parameters Ln the critical section are found from the condition c - a. For

this purpose it is possible to construct curves of variations of the speed of

0sound a(i) and of speed of flow o(i) depending upon the enthalpy; the intersection

point of indlioated curves gives the values a and i in the critical section. By

transferring this point to an i-s diagram there can be found also other parameters

in this section (Fig. 2-5,b).

0
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CHAPTER 3

TWO-DINENSIONAL JMTION LF GAS WITH CONSTANT ENTROPY

3-1. Potentia totion of Fluid

A condition of frrotational motion can be obtained from equation (1-6). For a

three-dimensional irrotatiorial flow (WZ- we u 5 0) from (1-6) it follows:-iil

By bearing in mind the mechanical sense ol the partial derivatives in equations

(1-6), we may conclude that formulas (3-1) indeed express condition of an absence

of the rotational moation of a fluid particle. On the other hand, equalities (3-1)

mathematically express the fact that there exists a certain function of the coordi-

nate50(x, y, s), the partial derivatives of which for the coordinates are equal to

projections of the speed onto corresponding axes of coordinates i.e.8
u a..-

U== "--

Ea

Aotuall, a substitution of (3-2) into (3-1) res••ts in an identities.

Function 44,7# a) is called the potential of th3 speed.

The concept of the potential of speed in aerchydromechanics is identical to the

concept of the potential of focmes in the mechanics of a solid body. From mechanics



it is known that derivative of the potential of forces in any direction gives a

projection of potential force, acting in this direction. By analogy, intensity of

change in potential of speed in direction of coordinate axes, determines projections

of the speed onto the corresponding axes (formulas (3-2)J.

The discussion above shows that the potential motion of a gas in an isolated

system is isentropic, i.e., if the flow is irrotational and adiabatic, then the

change in entropy in any airection in the flow is equal to zero and the flow of the

gas is described by a certain function of the coordinatesep(xs yj a).

In being restricted in this chapter to a consideration of only two-dimensional

potential flows of gas, we can obtain an equation of the potential of the speeds

by means of Euler equations.

For a two-dimensional steady flow on the assumption X - Y - 0, equations
du U I1 O~p*(1-12) and (1-16) give: It a M--T

Fig rif(3-.3)

OP Op
The pressure gradients W- and can be expressed in the following manner:

ou~J~ =kT=" at'lop OP OF =as~ -1P

of (Op- WygO
From the third equation (3-3) after differentiation we obtain:

After substituting (3-4) into (3-3) we shall haWe:
Op..--L ( du OuWX " a ' +. v.-

__ .p Ou0• 0•)

In substituting' derivatives of the density in (3-5), we obtain:

(_s )b ern ( -. i 4 - d (+ -)-o. (3-6)

By bearing in mind (3-2), we rewrite (3-6) in the form of:

3 2 2. 01!

I I I I I I I I I I I i i i I I • ! I



Y-mution (3-7) in a nonlinear differential equation of the potential of speeds

.in partial deriv&tives of second order.

Introduction of potential of speed made it possible to reduce a system of three

equations (3-3) to one (3-7), to decrease number of unlmowns from six to five and

to leave in the equation only the kinematic parameters.

If in investigated field Of flow, there is known the potential of speed O(x, y),

then under given boundary conditions there can be determined all parameters of the

flow. The potential of speed makes it possible to determine the speed of flow (u,

v) by formulas (3-2). By means of the equation of energy jointly with equation of

the isentropic process there are readily determined the pressure p. the density

wad temperature of gas T.

Thus, in investigating the potential motions of a gas, the chief problem ro-

duces to a determination of the potential of speeds 0 (x, y) for a given form of

motion, i.e., to determining the solution of equation (3-?). If the potential fAmotdn

0 (x, 0 is determined, then kinematic part of the problem is solved. Then, with-

out special difficulties, there i. solved also the dynamic part of problem. Howevers,

equation (3-7) in a general form, in not integrated.

Let us note that the potential function must satisfy specific initial and

boundary conditions of a given concrete problem. As kinematic initial conditions

there should be given distribution of parameters of flow in a definite -- initial -

region of flow, and also there should be known conditions on the boundary of stream..

lined body. In solving concrete problems of flow around bodies, most frequently

there are given parameters of flow of a nondisturbed flow at an infinite distance

from the body (initial conditions)and conditions of impenetrability - the normal

component speed on surface of the body is equal to zero (boundary conditions).

Thus, for ex=mplo, If a two-dimensional flow in infinity is parallel to the

x-axis, the potential of the speed should correspond to the following conditions:

LM
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u.=.

vt

Here also there must be known the remaining parameters:

p,, p®, T•.

On boundary of the streamlined body, physical conditions of flow around dictate

the distribution of speeds. By assuming a continuous flow around, we can write

that the normal component of the speed on surface of streamlined body must be equal

to sero and, ooiesequent•y, 0 0.

In considering an ideal liquid (in absence of forces of viscosity), we must

admit that particles of a fluid slip along the streamlined surface of a body and,

consequently,, tangential components of the speed

(here, there is considered a mobile system of coordinates, located in such a way,

'that direction bf the axis x at each point coincides with direction of the tangent

to the surface of the body; the y axis is normal to the surface of the body and,

consequently, to the streamlines).

A more detailed examination of equation (3-7), by which the potential function

40(x, y) ls determined, however, shows that it possesses different properties de-

pending upon relationship between components of the speed u and v and the speed of

sound a. Actually, let us assume that magnitudes -• and-L are very small and they

can be ignored, i.e., we assume that speed of gas flow is small in comparison with

the speed of sound. Then, frci (3-7) it follows:

PON on + -- -- . (3.4)

* quation (3-8) characterizes the potential flow of an ideal inoompremnsible

Ifluid.



At high subsonic speedsc when the effect of compressibility cannot be ignored,
t k I I !,1 ..-I i t I

the nonlinear differential equation (3-7) significantly is simplified in case this

flow san be considered slightly disturbed (See 3-3).

A study of steady two-dimensional and certain axially symmetric flows of gas

can also be simplified by introducting another function of coordinates - the stre

S cion %k . In turning to third equation of system (3-3), we see that it is

satisfied, if we assume aud FUpv a-i

or U

- I~ Di
7'-

In order that the stream function and the potential of speed have identical

dimensionality, the coefficient with derivatives is expediently reduced to a di-

mensionless form. Then, in the case of a potential flow equations for u and v

will be written in the following form:

a (3-9) 0
where "=-p'. ---. --

In the simplest case of motion of an incompressible fluid in equations (3-9)

the magnitude of relative density __I•, + -,.,)r-'" t~-I S= I. + 2-k
p. ' ii +2-k M+.. (3-10)

may be'assumed equal to unity,

Now equations (3-9) acquire the form:
a 

(3-11)
o--

It is readily noted that in the case of an irrotational flow [condition (3-1)]

function 'V satisfies the equation

If. in the entire region of flow of gas, the speeds vary insignificantly, it may

be assumed A - coneit, then transition to equations (3-11) will be attained by ap

, . .. . . i " i - . . .. " "• - . . . .. , •'[ " 'T 'l : . ... . , , , . • iU



.substitution W1 W P". In such a substitution the speed of gas is simply equal

to speed of an incompressible fluid:

to 5; V~v

Thus, the indicated simplest case of a transition from subsonic flows of gas

to flows of incompressible fluid are in essence, simply a disregard of the influence

of oacpressibility. Possibilities of such a disregard, stipulated by dependence

of the density on the Mach number, are very limited. In reality, if it were

required that magnitude - differ from unity by not more than 2%, then in accord-

ance with (3-10) Mach number should be not larger than 0.20.

The physical importance of the stream function * is explained in determining

the flow rate of a gas through an elementary open profile in a two-dimensional flow.

It is possible to show that stream function numerically is equal to the volumetric

flow rate of gas through such an elemontary profile. It follows from this that the

stream function conserves the constant value along streamlines of a two-dimensional

flow.

Actually., we shall draw in plane of flow a certain profile LL1 (Fig. 3-1) and

shall calcuiate the volumetric flow rate V through this profile. In accordance

I1e

Fig. 3-1. Diagram for deriving a condition
* of irrotational motion.

0*

i ' I I I I I I I I I I I I ,



With designations il Fig. 3j.l we obtain*.-
LII

V u=~'cdi [OS c(X, ,n) + E, r?'i (V, n)j dil ~(tidy - d,

since udlcos(x, n)--dV

and vdI cos (Y. n) - cdx.

But udy - vd•x = d';

then "V "-dru.+!(- "-u+-+-d"'.5r-"',-
L Lk 1

Region of flow, limited by the streamlines iL - oonst and V -onst, is

the tube of flow. Consequently, difference between values of stream function

VL-WL is equal to the volumetric flow rate of fluid through the section of

tube of flow, limited by streamlines, passing through points L and L.

Frau equations (3-1i) it follows that for an incompressible fluid

Fig. 3-2. The Composition of two-..
dimensional progressive flown.KEY: (a) Resultant flow; (b) lot

flow; (c) 2nd nlow.

By adding to function 0 different constant values,, we shall' obtain a family
of Isopotential lines. By u/ing conditions (3-12). it is possible to show that

the streamlines (lines 11'. W tenet) and isopotential lines (lines 4), - const) are

mutually orthogonals i.e.)ther, intersect at a right angle (Fig. 3.-1).

*The dimension of profile in a direction, normal to plane of figure, inssuwmed
d e.eqnl to auity.

of III isooeta Ins I I us IIin cnitionsi (33, i, is p, siletoshw.ha
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Fig. 3-3. Vortex source (Vortex Sink).

The equation of potential of speeds of a two-dimensional flow of an incompress-

ible fluid (3-8) makes it possible to develop the widely used method of superposing

the potential flows. From theory of differential equations of an elliptic type, it

is known that if function 0,,. ,401,2, ... y,,are solutions of such an equation, then

the sumD 44, + q '1 2l,+... + '-,l,, is also a solution of this equation. It follows from

this that, by composing potentials of the speed @ and of stream function 0 of the

simplest flows, there can be obtained the characteristic of a more composite motion.

Here the potentials of speeds and of the stream function are composed algebraically,

and vectors of speeds - geometrically.

Method of superposition of potential flows under certain conditions can be used

also for constructing composite flows of compressible fluid.

In Fig. 3-2 there is presented the simplest case of composing two two-dimension-

al progressive flows, intelligible without explanations.

Another example of the composition of potential flows is shown in Fig. 3-3.

The composition of a two-dimensional source (sink) and circulatory flow gives a

more composite motion, called a vortex source (vortex sinkl the streamlines of which

have a spiral shape.

3-2. Pressure Coefficients. Critical Mach Number

We shall dwell on certain simple concepts, very essential in concrete theoret-

ical and experimental problems of gas dynamics and which we shall use in %he future.

Suppose we place in the gas flow of subsonic speed, a certain curvi]l.near

,, • ',



airfoil and then we examine the variation of the parameters of an elementary stream,

encompassing such an airfoil (Fig. 3-4).

The disturbance of the flow at subsonic speeds created by airfoil will be pro-

pagated in all directions, including that against the flow. Under the effect of K

these disturbances the elementary streams, moving towards the airfoil, will be de-

formed. At the tip of airfoil, central stream expands; speed of flow here drops

and at the point of branching, A, vanishes. At this point the parameters will be

equal to parameters of the total stagnation of the flow. On the forward portion

of airfoil section of stream decreases, as a consequence of which speed increases,

and the pressure drops. On upper and lower surfaces of airfoil there continues a

contraction of stream with corresponding increase in speed. At a ceArtain point

the section of the stream is at a minimum. At this place the speed will bo maximum.

Further, on the rear surfaces of airfoil the stream again expands, its speed drops,

and the pressure increases.

Thus, as a result of the deformation of small streams, the nature of which is

determined by the shape of the streamlined body, along surface of airfoil the pres-

sure decreases. The distribution of pressures causes the generation of aerodynamic

forces, acting on the airfoil: The force of lift, caused by difference of pressures

-upper
A"

445 lower

FU. 3.4 Distribution of pressure
coefficients along airfoil.
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on upper and lower surfaces of an airfoil, and force of drag, caused by the differ-

ence of pressures on the forward and rear part of airfoil and by frictional forces*.

The distribution of pressures along streamlined surface is characterized by

dimensionless magnitude-the pressure coefficient, which is determined as the ratio

of difference between pressures at the given point on surface and of a static,

infinity to the velocity head undisturbed flow:

= -. •(3-13)

The velocity head can be expressed in terms of the dimensionless speed M .o

or A *, by using formulas (2-21) and (2-55).

Then 2I ,k+ I OL'P k=,• P' V +-. - (-3+--)
In certain cases the distribution of pressures along surface is characterized

by the dimensionless pressure ý, which is the ratio of the pressure at a given

point to pressure of stagnation of an undisturbed flow:

It is obvious that connection betwaen pressure coefficient • and the relative

pressure p is expressed by formula + -
"_" '- +, 2

=-P(e 2f P1)_= ('-"L~ (3-15)
At low speeds of incident flow, it is more convenient for calculating Lhe

pressure coefficient to use formula (3-13).

In rig. 3-4 there is shown the approximate distribution of 3 along surface of
airfoil. As long a• speed c a is significantly less than the speed of sourzd,

character of deformatiun of mall streams, and at the same timealso the picture

of distribution of pressure coefficients along the airfoil with a change in speed

f If we disregard influence of viscosity and consider subsonic and nundetachedflow around an airfoil, as is done in the present chapter, then the force of dragwill be absent.
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of undisturbed flow are kept virtually constant. However, by the degree of increase

in 1LJhe influence of compressibility becomes all more perceptible; distributiou

along airfoil starts to vary especially greatly there, where the local speeds in the

stream (on surface of airfoil) are higher. In minimum section of the stream the

speed is the maximum. We shall find the dependence between dimensionless speed Me*

and speed at certain point on the airfoil Mi.

For this purpose we use formula (3-14), after replacing in it the ratio of the

pressures by correspording 4 numbers:

p- i+T-,b
Lao I + k I Al

we obtain

I+--AIi (3-16)

1 4- i-- All'

At a certain value MX, • * in the minimum section of the tube of flow there

is established a critical speed Mi - 1. Corresponding magnitude of pressure
k &

coefficient will be.: 2&-~~/ ~'M~ I.
")+ 1]. (3-1)

The magnitude M is called the critical M number of incident flow; it determines

that value of dimensionless speed of incident flow, with which maximum local speed

on airfoil of a body becomes equal to local speed of sound. From a determination

of the critical X number, it follows that this magnitude differentiates subsonic

regimes of flow round a body into two groups. The first group of subcritical regimes

(< KM.) is characterized by the fact that at all points of the field of flow, the

local speeds are subsonic (M,< i). To second group (M.> M.) belong regimes of flow

around with local supersonic speeds.

In the inv'qstigation of two-dimensional moticin of a compressible fluid, refer-

Ing both to the first, and also especially to the second group of regimes, it is

necessary to consider influence of compressibility. This problem is solved in



works of a number of Societ scientists. Even in 1902, S. A. Chaplygin in his work

"On Gas Jets" published a method of calculating the compressibility for a two-

S dimensional flow. This work has been very valuable at present and has been the

beginning for majority of contemporary researches on determining the effect of com-

pressibility in the flow around bodies by flow of gas. The Soviet scientists

S. A. Khriatianovich, L. I. Sedovget al., by fruitfully developing the idea of

SI A. Chaplygin worked out reliable methods of calculating the effect of compress-

ibility. These methods are widely used also in solving problems associated with

the flow of gas in the flow part of turbomachines.

Together with relatively complex methods of calculating the influence of com-

pressibility by a number of authors there have been proposed approximate methods,

making it possible by the value of these or other assumptions to simplify the

problem and by means of comparatively simple calculations to evaluate the influence

of compressibility on the flow around a body. These include methods by L. Frandtl,

S. G. Nuzhin, G. F. Burago, A. N. Sherstyuk, and others.

3-3. Calculation of influence of Comrressibilitz by th,4
Method of Small Disturbances

The considered below simplest method of evaluating the influence of compress-

Lbility in two-dimensional subsonic flow will be used in those cases wher the

disturbance of the flow can be assumed weak.

We shall select a system of coordinate axes so that the x-axis is directed by

the speed of undisturbed flow, and the y-axis is normal to the speed.

After designating by c' and correspondingly u' and vI the additional speeds,

caused by any other diLturbance of flow (thus, for example, influence of stream-

lined body), we shall present the speed at certain point of a disturbed flow in

such a form:

CC.+c'. - or U =zu.-i+U'; V =V.

Here we assume that v 0,, since the flow at infinity is parallel to x-axis

(c . u .). By assuming further that uI and vI are small magnitudes of order A
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we come to the conclusion that the derivatives' .. ... n. die; ýv . dg .;

*u ax- eam 0 OudvO

have the same order A After having evaluated terms appearing in equation (3-6),

'aa

where Y and 1' are small magnitudes, having an order A or A'

An evaluation of the terms1 appearing in equation (3-6), makes it possible to

simplify this equation, if we disregard termswhose order of smallness in higher

than A . After the indicated s*!plifications we obtain.

+ 0. (3-18)

or for a potential flow

dX 42 (3-19Y)

Thus, the discussed method, proposed by L. Prandtl, is founded on the assumption

that the deviation of speed of disturbed flow from the speed of the undisturbed

flow a aq- u 6 is so small that the deVsees of the indicated deviation higher

than the first can be ignored. The equation for potential of speed (3-19) in

distinction from (3-7) is a linear differential equation, therefore the method of

small perturbations is brought about by the method of linearimation. The considered

method may give satisfactory results in calculating the flow around thin slightly

curved airfoils located at small angles to direction of speed of undisturbed flow,

and also in investiatSng flow in channels with a small curvature of the confining

walls. We note that near the branching points of flow (critical points on strface

of streamlined body) the basic assumption of method is not valid, since in these

regions, flow is stagnated and magnitude in change of speed is commensurable with

the speed at infinity.

Squation (3-19) at subsonic speeds can be reduced euation (3-8), which deter-

mines the potential of speed of flow of an incompressible fluid. Actually, we

shall compare the considered subsonic flow of gas with flow of an incaopressible

fluid, by assuming that the speed and density of both flows at infinity will be t



.identical. let us assume that the potentials of the speeds of flows being corm-

pared are associated by the relationship

0 (3420)

We shall designate coordinates of points of flow of an incompressible fluid

xland YH. We shall assume further that between coordinates x, 7 and y, 7H there

exists a dependence of folXJ)wing form: ! O .I X

For slAplification it is possible to assume x - X., then

v.--#v. (3-21)

We now substitute relationships (3-20) and (3-21) into equation (3-19):

It follows from this that if we take

0= (-22)

then equation (3-19) will be transformed to the form:.

"'+ =, (o. (3-a)

Equation (3-8a) in the new variables coincides with equation (3-8). By using

0 the obtained relationships, there readily is found a connection between parameters

of the two flows being compared.

Let us consider the flow around one and the same body by a flow of an incom-

pressible fluid and a flow of gas. We shall designate 'Ath a and a the angles

of slope of small sections of streamlines (Fig. 3-5). By bearing in mind that in

accordance with basic assumption of method, these angles are small,, we shall find;
Sdy . dyf.

a, z. a= --a1. T&,v,2, ý am ý= . (3-23)

In an ideal fluid one of the streamlines coincides with the contour of body.

At the boundary line of flow there must be fulfilled the condition

* ' '
,or according to (3-23)

dy d16

7,f
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Vig. 3-5. Stream lines in a flow around an airfoil by
flow of gas (dotted line) and an incompressible fluid.

In considering that the speeds at infinity are identical, we find that the

indicated condition is observed, if v - v- or 04•- on the basis of relation-

ships (3-20) and (3-22) we establish that in considered case 4-) 1, or

The ratio of the longitudinal components of the speed in the two flows being

compared is equal to: U~ 60. Ox _

-#a ix- yo4u F (3-4)

For comparison of distribution of pressures, it is sufficient to compare

pressure gradients in both flows, since earlier, it was asaumed that x - x H and,

consequently, ratio of the finite differences of pressures is equal to the ratio

of the gradients d• dA .Ap
dx dpw Ap"

On the basis of the equation of momentum (2-1) the pressure gradients in

compressible and incompressiLle fluid will be:
dpa dc,. dp de.
- -- P.C ,.7 ., P--- PCT '

then
Ap #c de

or with a consideration of formula (3-14)
e de, c, + c4 d (c. + C)

where c', of,, as previously, are additional speeds (small magnitudes), caused

by disturbance introduced by streamlined body.

After corresponding transformations finally we obtain:

__ I(3-25)'

From formulas (3-24) and (3-25) it follows that in the flow around one and
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the same body by a gas the speed, and difference botween pressures is greater than

in the case of a flow around by incompressible fluid.

This difference between flows of gas and an incompressible fluid can be explain-

ed by the dependence of the density of gas on the speed (See. 2-4). In Fig. 3-5

there are shown streamlines during flow around a body by a compressible and incom-

pressible fluid with identical parameters and speed c to of the nonperturbed flow.

Another simplification of the original equations, based also on the assumption

on weak disturbance of a flow, was given by A. N. Sherstyuk, who had developed a aim-

plified, but more accurate method of calculating the influence of compressibility,

For evaluating the influence of compressibility in a weakly disturbed two-dimen-

sional flow with subcritical speeds (M.< At.) we shall use the equation of conti-

nuitY(I- 12 ), after writing it out for a two-dimensional steady motion of a gas'
jX- (3 -26)

and also we use the condition of absence of vortexes (3-1) for a two-dimensional flow.

In this case from formulas (1-6) we obtain:
0. (3-la)

We now consider the flow around a wing profile, shown in Fig. 3-5 by a two-

dimensional gas flow.

By following A. N. Sherstyuk, we convert in the equations (3-26) and (3-ls)

from speeds u, v of a flow of compressible fluid to speeds in the flow of an incom-

pressible fluid uH, vH after assumUig

CN=C (3-27)too

Here the exponent Q is determined an the basis of simplified associations

corresponding to the assumption on a small disturbance of the flow; p is the

density at a given point; p*, is the density of an undisturbed flow.

As has already been noted above, in accordance with method of small di sturb-

anoes it is possible to assume:
"==.?+'; (3-28)
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* ... * . ... .... . For an €ncoapresslble fluid, analogous simplifications are valid:

and

In using these relationships, by substituting (3-28) into equations (3-27) and

.(3-5a) and by discarding terms of second order of smallness, there readily is

obtained:

1 4 .au" --O"! (3-30)

In order that equations (3-30) are reduced to equations of continuity and a

lack of vortexes for an incompressible fluid, it is sufficient to assume, as

previously, a connection between coordinates in a compressible and an inoompressible

fluid (3-22): A =X; !"

and, besides, to assume:

I-4'F~i~(3-31) 0
Actually, after substituting (3-22) and (3-31) into equations (3-30) we find:

•-+ 0; 0-• j-=o. (3-2)

It follow from this that the speeds uH and v actually are local speeds in

the flow of an incompressible fluid during flow around the same body at same angle

of attack.

For determining speeds during flow around a body by a compressible fluid it

is necessary at first to calculate field of speeds in the flow of the incompress-

ible fluid with the same magnitude and in the same direction of speed of the

undisturbed flow (oH ' c,. ). Here, the local dimensionless speed X at an

.arbitrary point of flow will be: -k

_(.3-27a)



The dependence 0 - f (A ,) is presented in Fig. 3-6. From this graph it

follows that coefficient 0 can be considered approximately constant at numbers

- < <0.7 to 0.8. The sharp increase in 0 at large A .stipulates the nonvalidity of

the considered method in this region.

AX

W

--- - -

4V

4iopesl -
9 41 4 1 40i (14 4 0 45 847 45 45 1.0

Fig. 3-6. The dependence of the exponent
on the dimeonsionless Speed A.

The connection between speeds in a compressible and incpmressible fluids by

formula (3-2?a) for different speeds of incident flow is sh wn in Fig. 3-7. With

anincreasein A 0ps the speed in the flow of a compressible fluid at a given

point of a streamlined body intensively increases in comparison with the speed in

an incompressible fluid.

We shall establish now a connection between pressure coefficients in incom-

pressible and compressible fluids:

Ffom the Bernoulli equation for an incompressible fluid

we find the pressure coefficient in the following form:

2L d j,-"U (3-33)

For a compressible fluid the pressure coefficient is determined 'by formula

(3-16). In expressing * in terms of the dimensionless speeds A and A., we find
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(Table 2-1):

By usIn formulas (3-27a), (3-33) and (3-34), there can be obtained a connec-

tion between pressure coefficients in compressible and incompressible fluids I

and ýH . This connection is presented in Fig. 3-8 and 3-9. Here, there is shown

the dependence between p and p for different values or x •. Curves in Fig. 3-8

I4:-

4.2 ,4 ,6 o,7 oU oS o 0

'Fig. 3-7. The relationship between dimeasionless speeds
in compressible and incompressible fluids according to
A. N. Sherstyuk.

are useful for converting positive values of %. in this case the pressure at the

considered points on surface of the body is higher than the pressure of the inci-

dent flow. The graph in Fig. 3-9 is used for converting negative values of PH'

The dotted line, limiting the diagram p - f(h) from above, corresponds to values 14,

at which 1- 1. k other words, this line determines the critical values of dinwsionless



r M

V. 4t Va 9. Vs 48 4 48 0,V 1.0
-. 4

Fig. 3-8. Relationship between positive pressure
coefficients in a compressible (p) and incompress-
ible (7H) fluid at different X to.

qseed cf kIdent flow Mq - M depending on p or on PH and thereby limits that region of

magnitudes MueM* - f(j) for that which there may be made a calculation of in-

fluence of compressibility by considered method.

In Fig. 3-10 there is presented a curve on the basis of data of a well-developed

theory, establishing the dependence between minimum pressure coefficient at point

of enclosing the body during flow around it by an incompressible fluid N min and

the critical number A of incident flow. The curve in Fig. 3-10 in coordinates

(• rmin, A) reproduces the boundary line X- 1 in Fig. 3-10.

/
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* ...... •

---- 7-i--

.9 45 '40 45 lMP

Fig. 3-9. Relationship between negative pressure coefficients
fo' compressible P and incompressible N fluids at different? ..

The 'ormula for calculating this curve cln be obtain.d from (3-33) by means of

(3-27a). Actually, from these relationships we hay.:

After replacing the ratio -- (Table 2-1), we obtain.

p~2dI ,~ - I.1-' +,--1
After assuming " and A x* we find:

ao,,, I - -'

Thusj, if there is knowiu the distribution of pressures along contour of body at

low speeds# when the influence of compressibility can be disregarded (distribution

Ad# then, by using curves in Fig. 3-8 and 3-9, there readily can be found the



distribution of pressures at high subsonic speeds with a consideration of the

compressibility. As can be seen from graphs, the influence of compressibility is

soon in the fact that in the region of positive values p, the pressure coefficients

for compressible fluid will be larger, and in the region of negative values-lower,

than for an incompressible fluid.

- ,Consequently, owing to the compressibility,

S - the absolute values of pressure coefficient

increase. Here the regions of minimum
pressures becomes steeper and they are ex-

"tended (Fig. 3-4)*. From a consideration
W 45 47 4 40 40 of Fig. 3-4 it is evident that with an

Fig. 3-10.. The dependence be- increase in N the area, included between

tween pressure coefficients -
and the dimensionless critical the curves of pressures for upper and lower
speed X * .
FY (a) .mn.i surfaces of the airfoil increase. Here,

4

I -

I a A 45 V0,3 44 V7 05841

Fig. 3-11. Comparison of experimental
and calculated pressure coefficients.
1--after Prandtl; 2--after S. A.
Khriatianovich; 3--according to formula
of Karman-Tsien (3-37); 4--after A. N.
Sherstyuk; 5-experiment

and The curresponding graphs of change of pressure coefficients along a&rf'oil
and blade are presented in Chapters 5 and 8.
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obviously., the lifting forcewith an increase in Mo, increases.

All conclusions of the considered method are well verified by experimental

data.

A comparison of experimental and calculated values of 5 at point of upper sur-

face of wing profile, located in flow at a small angle of incidence, is shown in

Fig. 3-11. The airfoil has a relatively larger thickness and curvature.

For comparison in Fig. 3-11 there are presented also the computed curves,

corresponding to formula (3-25) by L. Prandtl and on basis of more accurate for-

mula of Karman-Tsien: ; - #MCZ-02 + • C
21 + ,(3-37)

The coincidence of calculation by formulas (3-27a)- (3-34) and by formula

(3-37) with the experiment is entirely satisfactory. Significantly poorer are the

results obtained with the use of formula (3-25).

3-4. Theorem of N. Ye. Zhukovskiy

The theory oZ the force effect of flow of an ideal fluid on streamlined bodies

is based on the well-known theorem by N.e.e Zhukovskiy. N. Ye. Zhukovskiy establish-

ed the vortex origin of the force of interaction and found a simple connection be-

tween this force and the intensity of circulatory flow, generating during flow

around a body. This problem was solved ty N. Ye. Zhukovskiy in 1906.

UAU

Fig. 3-12. Diagram for proof of theorem by N. Ye. Zhukovekiy.



For proof* of theorem by Zhukovskiy we shall use the diagram, shown in Fig. 3-V.

We shall place the wing airfoil in a two-dimensional flow between two impermeable

flat control surfaces, oriented along flow and separated from each other at a

distance h. :-e system of coordinates xOy will be placed so that the direction of

x-axis coin. des with the sense of the vector of speed of undisturbed flow ca..

At an infinite distance from the airfoil we shall draw sections ab and ad, normal

to the direction of flow.

In assuming that the airfoil is flowed around continuously, and by applying

theorem of the variation of momentum to the mass of fluid, included within volume

abad, we shall find that the force, directed against the flow and the so-called

drag of profile, is determined by the formula
P,• ='J (p.-- p.) dy-- POc, (r, -- c.) dY.

Since the speeds and pressures in the sections ab and ad are identical, then

The presented result was obtained for the first time by L. Euler in 1745 and

independently of him in a more general form by dfAlembert. It may seem paradoxical,

since it contradicts experience. However, one should bear in mind that this result

is obtained on the assumption of the absence of viscosity and separation of flow

from the surface of a streamlined contour. In reality always to a certain degree,

both of these factors take place.

In a practical re3pect there can be made the conclusion that one should make

an effort to obtain those shapes of a contour, with which thore would be assured

a continuous flow around and the minimum effect of the forces of viscosity; in this

"* The below presented proof of the theorem of N. le. Zhukovskiy was proposed by

.0. F. Brago.

"FThe considered forces we refer to a unit of length of wing.
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case, obviously, resisting force will be the minimum.

We shall find now the magnitude of force PY, normal to vector of speed c a.q

This force is called the lifting force. After designating in terms of N pressure

on the lower control surface and in terms of pS the pressure on upper control

surface, we obtain: pu+5(-,

since the projection of the speeds along the impenetrable control surfaces onto

the x-axia is equal to zero. Consequently,

-N.GPIZ-- (P.,- pJd 4-.

By increasing the distance h between the walls in a limiting case (at h-* 0o)

we will receive a flow around a body by infinite flow. Here the flow along the

walls will be slightly perturbed. Speeds of such a flow, as is known, can be

presented in the form of (formulas(3-28)]:

CH = C + c; * (3-28b)

where c , are small additional speeds along the walls, caused by influence of

streamlined body.

Pressure at an arbitrary point of a perturbed flow is associated with pressure

at infinity by Bernoulli's equation:
I~~ ~ C _ T~-••.CS),

which under the usual assumption (a slightly distarbed flow) on the basis of (3-28b)
p, ±ook--I

will be transformed to the form: F C*---k-"

__Poo POOe k
Hence, by bearing in mind that and i ;, after simple trans..

formations we find: 
i E

e (3-39a)

Equation (3-39) or (3-39a) is valid for a linearized flow and is called the

Bernoulli linearized equatio . Equation (3-39a) can be written out for sections



on the upper and lower control surfaces:
p. = ~p.- e..CN.

and P a.= -P.C.0 C.

By substituting p. and pB into equation (3-38), we find:

ptl P, -.S c :) dx.to

It is readily seen that the integral ( -- C.)dX it is possible to

express in terms of circulation of speed over the closed contour (Fig. 3-12).

Actually, ,d, .'nab + I"W + I, "d + "'t.

since lV C +t• +c) dx; I'd-. - (cO,4- c') dx; I 'b ed.

then , c,-)dx.

Consequently, p pIrc.

(3-.40)

Formula (3-40) expresses the theorem of N. Ye. Zhukovskiy, which is a funda-

mental theorem in aerodynamics. Theorem of Zhukovskiy can be formulated as:

durIng flow around a body by a planar-Ragallel infinite flow of an ideal aMpreasb.s

fluid onto a body of unite span there acts a force, equal to the product of the cir-

culaigon of s•eed r by the speed co aand by the density poo or the undisturbed flow.

The direction of this force is normal to the direction of the speed of undisturbed

flow c . Here as it follows from the conclusion, if the circulation integral

calculated clockwise along the outline, proves to be positive, then also P will
y

be positive. The lifting power P 7 frequent is called the Zhukovskiy force. For

determining P it is necessary to know magnitude of circulation integral, which

is calculated on the baeis of the Zhukovskiy-Chaplygin (Sec. 1-2) postulate.

3-5. The Two-Dimensional Subsonic Potential Flow of a Gas in
Curvilinear Channels

In considering a two-dimensional or axially symmetric potential motion of a

II I II I I I II II I l [ [ J7?:



gas along curvilinear trajectories, we shall select as the independent variables,

the distance along the streamlines (S) and along equipotential lines (n) (Fig.

3-13).

AS AR

A n

r4

Fig. 3-13. Diagram for deryv-
ing equations of motion in a
curvlinear channel.

We shall transform the equations of continuity (1-14) and of lack of vortices

[third equation of system (3-1)] in the new coordinates. For a'z elementary volume,

limited in plane of the f gure by sectors of the streamlines AS and A S' and the

equipotential lines An and An'# the condition of continuity will be written in

such a forms i a rn) =--.

or a Is (pert) + I dan

where r is the radius of center of gravity of section An (Fig. 3-13,a). Further,
- .. 5

since 04m ==dy

I( is angle of the streamline's slope), we shall present the equation of conti-

ý.nuity in such a form, In (pe =0..

4(3-41)
,:• , ,•':: • ' '•',7',"



The condition of absence of vortices will be (Fig. 3-13):
Wn(cAS)-0.

After differentiation we shall obtain:
Ind* I- AI

Since (Fig. 3-13,a)
eas ays

S- us
then finally we obtain:

onA G (3-42)

Equations (3-41) and (3-42) are valid for axisymmetrical flows of a compress-

ible fluid. For two-dimensional problems these equations are simplified and are

reduced to the following form: -0; (3)4__)

--r.e ._•=O

The obtained equations make it possible by the most simple methods to calculate

flow of gas in a two-dimensional or axially symmetric curvilinear channels*. For

this purpose it is necessary to find the distribution of the speeds along equtpo-

tential liner in the channel.

For an •pproximate determination of the length of equipotential lines in
/

channel there are inscribed circles (FiM& 3-13,b), tangent to walls at points A

and B. Through points of tangency there is drawn an arc of the circle, normal to

walls of channel, which approximately givec the length of an equipotential line.

Such a method of determining the lines 4 - const in valid cnly when their

curvature is small.

The e. ations of continuity (3-41) and (3-41.) show character of variation of

angle of slope of speed vector in cross-section of channel, and the equation for

the absence of vortices makes it possible to formulate the condition, which the

,diagram of speeds must satisfy on any streamline, including also on walls of channel:

*WThe calculation under discussion of flow in channels was worked out by S.
Samoylovich and A. N. Sherstyuk.



For finding of tha distribution of speeds along the lines 0 const we

shall use equation (3-42), after replacing

where - is the curvature of streamline.
RS

Then * _

We multiplyv both sides of this expression by the trinomial Rei + n + Mn2 and

then add to it the magnitude c -(Ri-n+-nI)..

After simple transformations we find:

lec(R3 , + n +XnI)I 1 -20!
The left-hand side of this expression vanishes at n a 0; the constant k can

be selected in such a manner that the derivative0 le (R3,,+-n +I Kn')
is equal to zere also at R si - Rs2 ( F i g. 3-13,b). In this case it differs little

from sero and at all points of the lines 0 cohrst. This condition means that

law of variation of speeds along line 0- const will be:

(R., "+ n + Kn') = const,

or , + ,; , (3-43)

where 24,- 7,o Rs I n

The variation of speeds along boundaries of channel is established by means

.of formula (3-43), valid also for a compressible fluid. The condition of constancy

•of flow through the channel serves as the original condition.

At small numbers,-M < 0.4, when the influence of compressibility can be ignored,

_volumetric flow of fluid'.through a plane channel will be: 4-

3.

-Q 'cdn. 2

0li PI.



By means of formula (3-43)s after integration wo obtain:

n ii'c 2B~~ + j I K)(3-44)

Hero a. is the average speed in section of channel; c 1 is the aepod at a

point on at convex wall.

For convenience in calculating in Fig, 3-14 there is presented a graph of the

relationship f f(;B, x) s expressed by formula (3-44).

In the case of an axially symmetric channel the volumetric flow of a fluid

is determined by the formula 2%. RSC(In.

Erg

*r7.i::i>~,lj B

.T

Fig. 3-14. Graph of dependence 8 on and x.
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In sliplifying the solution of problem, it is possible to assume a linear

conection between R and n: Rs,- Rs-+-!!- (Rs,- Rs1).a n.
By analogy with formula (3-44) there can be obtained*:

Q- Q (3-45)

RSa1 WSWZ i-i-i

The calculation of axially symmetric channels is considerably simplified by

using the graphs, presented in Fig. 3-15.

The above-presented formulas (3-") and (3-45) are valid for small X numbers

(incompressible fluid). However, law of distribution of speeds, expressed by for-

mula (3-43), can also be assumed for a compressible liquid in the same form:

+ (3-43a)

The weak influence of compressibility on the diagram of speeds in cross-section

is explained by the fact that the condition of irrotational motion., used for obtain-

Ing (3.43), does not contain density.

A marked change of curvature of streamlines and of the distribution law of

speeds in a cross-section is noted only at high dimensionless speeds and significant

gradients of speeds along the channel.

I LILI I I I A I

Fig. 3-15. Graph of dependence a on NB and x.

* Formulas (3-44) and (3-45) are valid if the internal and external walls of
a channel have a curvature of one sig..



In a wide range of subsonic speeds (M _ < *) the calculation of the channel with

a consideration of the compressibility can be made by means of introducting the

average density in the given section. On the basis of method of small disturb-

ances by A. N. Sherstyuk it has been shown that the average reduced flow rate in

a section, is equal to:

where U is the mass flow rate and G* the critical flow rate of a gas through

a given section, associated with the average speed and density by the relationship

IN
(Po Al, are the average density and dimensionless speed for the section). The aver"-

age density P,-q Ijy readily can be determined by qm by means of tables of gas-
dynamic functio. S s wh a "

dynamic functions. Speeds with a consideration of the compressibility can be

determined by the simple formula: K c and cm are speeds, determined without

a calculation of the compressibility).

The above-shown method is useful for calculating different channel, for example,

* channels of turbomachine cascades.*

3-6. Two-Dimensional Supersonic Flow

Let us turn to the study of basic properties of a two-dimensional supersonic

flow. For this purpose let us consider simplest case of a steady uniform super-

sonic flow moving with a constant speed along the wall BA (Fig. 3-16). Let us

assume that along the normal to the wall BA the speeds also do not change. At point

A of this wall there appears disturbance of the flow, caused by a change in direct-

ion of wall by a small angle. Owing to smallness of the angle da disturbance of

point A, expressed in the variation of parameters of flow (the pressure and tomper-

.sture decreasethe speed increases), may be considered weak.

It is readily seen that in a supersonic flow the disturbance can be propagated

See Sec. 8-2.
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only in the direction of flow, since the speed of the motion of particles of gas

is higher than the speed of propagation of weak disturbances (cl> al). The

disturbance, appearing at the point A, is carried along the flow, where a certain

line Am serves as the boundary between two different regions of flow: to the

left of line Am there is located the undisturbed region of flow, but to the right

of this line the flow is disturbed by a change in direction at point A.

Thus, the line Am is the boundary, separating undisturbed part of flow from dis-

turbed. Since in considered case it is a matter of a weak disturbance, then this

line is called boundary of ak or sonic disturbances, a weak wave. a char-

Acteristic or-a Mach line. Here we have in mind that any weak disturbances of

the flow are propagated with the speed of sound (Chapter 2).

Mechanism of the propagation of weak

disturbances can be analyzed more specifi-

sally, by considering another continuous

effective source of the disturbance in a

.. . two-dimensional infinite supersonic flow.

Fig. 3-16. Flow round corner Such a source of weak disturbances mightpoint by supersonic flow.
be a fine-pointed body of infinite span

with very small aperture angle of front wedge (Fig. 3-17). The small variations of

parameters of flow created by the body are propagated with the speed of sound aI,

while the speed of flow incident to body is cj>aj.

The waves of disturbance are circular infinite cylinders, whose radius is reAdtib

determined as a1 A t. where at I,e the time interval, calculated from moment of

onset of considered wave at point A. During the same time interval the particles

traverse a path, equal to c1 A t. Consequently, the center of observed wave is

transferred to a new position A1 . With a continuou6 flow around body at point A

in succession there will form an Infinite number of waves, moving in the direction

of flow. Since the speed of the flow is e>al, then the lator-formed waves will

o qq



lag from the preceding, where the entire family of waves has two coammon tangents

Am and \,m, proceeding from point A.

'This is readily verified by-finding the relationship between radii of wave,

and the displacement of its center: _-n, =_n- .- - -"-

where a M is the angle of slope of the tangent to sense of speed vector ca.

The appearance of lines Am, Am1 can be assumed as the result of the continuous

weak (gonic) disturbances of the flow; they stationarily are associated with

source of disturbances (tip of body).

000
Fig. 3-17. Flow around of thin-pointed body

by supersonic flow.

With the intersection of such a wave, the particle of gas experiences, a

change of all parameters: pressure, density, temperature and speed. However, in

connection with the smallness of the disturbance these changes are infinitesimally

small. In the considered case of flow around a sharp tip of body there occurs an

insignificant compression of the flow and the pressure behind the waves Am, Al1

increases by a small magnitude dp, and the speed correspondingly decreases by do.

Therefore, the waves Am, Am, are called wea comipression waves.

In those cases, when transition through wave is accompanied by an expansion

Sof the flow and, consequently, by a decrease in pressure by dp, the wave is called

a weak wave of rarefaction. Somic waves of rarefaction develop, for example,
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during flow around an external obtuse angle (Fig. 3-16) by a supersonic flow.

From a consideration of flow around a thin wedge, it may be concluded, that in

a supersonic flow, there will be formed characteristics of two families, located at

an angle +a. to the vector of speed at the given point.

From the formula - arcsin -L

it follows that in accelerated supersonic flow angles of the characteristics in

direction of flow decrease, but in diffuser flow they grow. Hence, it is possible

Fig. 3-18. Weak waves in two-dimensional flow

i with a nonuniform field of speed.

also to conclude that with a change of speeds in transverse direction to the flow

the characteristics acquire a curvilinear form.

Thus, if along the normal to streamlines the speeds increase the charactoris

tic by convexity is turned towards undisturbed region of the flow (Fig. 3-18). If,

conversely, the speeds in the direction, normal to waLt, decrease, then character-

istic by convexity is turned toward the disturbed region of flow. With a complex

nonuniform distributionof the speeds in flow the characteristics may acquire also

a more complex form.

Let us turn now to the study of finite disturbances of a supersonic flow. Here

we shall consider at first only those disturbances which cause a continuous

variation of the parameters of flow.

Let us assume that along the wall BA a uniform supersonic flow moves,

(Fig. 3-19). Beyond point A gas enters into a region of lower pressure (p2 < p1 )"

Here, the flow is deflected from the direction of wall BAs by being turned at a

certain angle with respect to point A towards the lower pressure. The disturbance,

created by point A, is propagated in supersonic flow along the characteristics S
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Fig. 3-19. Diagram for forming a
wave of rarefaction during flow
around angle b7 supersonic flow.

Am2, Am, . . . , , forming a stationary wave of rarefaction mjAm2,

The disturbance of the supersonic flow begins in characteristic Am.- slope

angle of wave Am1 to direction of undisturbed flow is determined by the

foemu] an, - arcsin 1. The disturbance is concluded on line Am2; position of

this characteristic can be determined if the soeed of disturbed flow is known:

Between the characteristics Am, and An2 there occurs an expansion of the gas

frcm P1 to P2 . With the intersection of the wave of rarefaction, the streamlines

correspondingly are distorted, since during a flow around point A the flow expands.

The speed of flow increases, and temperature and density decrease. The charncter-

-ptics Ami Amn et ceteracorrespond to intermediate points of the streamline

within the limits of the wave of raz efaction; along each characteristic the

parameters of flow remin constant. The angles between characteristics and tan-

gents to streamlines in the direction of flow decrease:

£• >6 0,>e •

In considering the gradual transition to parameters of the disturbed flow

and p2 with infinitesimally small intervals A H and Ap within the limits between

Am and A, it is possible to construct an infinite number of characteristics,

ccmprising a stationary wave of rarefaction of finite intensity. Intensity of

wave mlAm2 varies with a change in pressure p2 . Here, if the parameters of an

q7
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undisturbed flow remain constant, characteristic Am, maintains its tormer position,

and the characteristic Am2 is transferred depending on the change in P2 . With an

increase of p2 , the characteristic Am2 approaches Am, and at p2 - P1 both

characteristic coincide (weak disturbance of flow).

We shall establish the dependence between parameters of flow at the boundaries

of wave of rarefaction. For this purpose we shall use fundamental equations -

of a two-dimensional flow - Euler equations. By bearing in mind that parameters

of flow along characteristics do not change, the indicated equations are used in

cylindrical coordinates.

For a two-dimensional steady motion of gasequations (1-17a) and (1-14) in

coordinates (r.0e ) acquire the form* -a-r rI:~% W

"• , r - - (3-46)

+ 06

In considering the simplest case, when the undisturbed flow before the wave

of rarefaction has a uniform field of spoods and characteristics, which form the

wave of rarehtion, are rectilinear , it is possible to assume that the parameters of

flow maintain constant values along any radius within limits of a wave.

Mathematically this condition can be written out as:

LIEap .U Cl -oOr- OrV 2=

Then, in the equations (3-46) it is possible to convert to a total derivative.

After simplifications we obtain:

'W= •; (3-46)
desC/ .,(3-46b)

C, (C' + -A)~ (,-6b

d# + CO 0. (3-46c)

Equation (3-46c) expresses in polar coordinates the condition of a two-

S dimensional irrotational flow.

Actually, frcm the third equation (1-19), in assuming 0 -, there readily

* The influence of body forces is ignored.
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is obtained formula (3-46c)

Hence, we arrive at the conclusion that during a flow around the angle point

A the flow remains potential and irrotational, and consequently, also the entropy

of flow, intersecting the wave of rarefaction, is kept constant.

The common solution of equations (3-46b) and (3-46c) makes it possible to

establish still one important property of supersonic flow.

We shall substitute in (3-46b) the derivative of the density:
dp / dp\% dp Ia•
W= - - - ]dP /a$ s.

BV discarding from (3-46b) and (3-46c) di, we obtain:

The latter means that the deflection of flow in a wave of rarefaction occurs

in such a manner that the component of speed, normal to radius vector, is equal

to the speed of sound at the given point.

This conclusion may be obtained also fran an analysis of picture of propagation

* of weak disturbances in a supersonic flow (Fig. 3-19). It follows from this that

the usual assumption about constancy of parameters of flow along a radius makes

it possible to consider the generation of a wave of rarefaction of finite intensity

as a result of a progressive expansion of flow in the system of an infinite set of

weak (sonic) waves of rarefaction.

We shall establish now how the speed and pressure along streamline inter-

secting a wave of rarefaction vary. For this purpose we shall use the equation

of energy:, as t =k+l a k- I-C;

b7 bearing in mind that c c,ýa,

we obtain: h+I a• k c.

de,
We subutitute in this equation C*=- j-; then we shall obtain a difterential

equation for determining radial component or:



k--I-Vk

By integrating the last expression, we arrive at the equation
arc sin m = 0~ + K).

where

The constant of integration K in determined from the boundary condition.

We assume that at 9 - 0 radial component of the speed c~ - 0; this means that we

examine the expansion of an undisturbed flow, having a speed, equal to the speed

Of sound (x I - 1);j hence X 0.

Finallyg we obtain: si C16.

The component of speod ac, is determined by the equation
toofCos (me).

The dimensionless speed'A at an arbitrary point of wave of rarefaction
a a + 3.= sin' (rf)+ cos' (r)

or

(3-47).

For determining the pressure at the same ffint, we shaJ:1 use the equation

Hence,, after substituting A from (3-47) we obtain:

+L rIcos (2mil) Ar- (34

In using formula (3-.47) or (3-48) and by bearing in mind,, that in a wave of

rarefaction the process is isentropic, it is possible also to calculate the change

in density and temperature in a wave of rarefaction: and '

Formula, (3-47) shows that the limiting value of angle 0 1

sin' (#ISO" 1.
or

ii' 'I IM. 4f
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2 =- i 3-!-- (3-49)
corresponds to the maximun speed I' . t -----=

In this case during the flow around an angle, the flow acquires a pressure

P2 ' 0 (escape into vacuum). We note that in such a regime, the direction of

boundary characteristic A coincides with direction of streamline of the deflected

flow, since a a resi a

It moust be emphasized that the considered regime of flow A(1m',) is a

theoretical, limiting regime.

The second limiting regive of flow round the angle point corresponds to the

value of speed X - 1. Here 9 - 0 (sonic flow with infinitesimal change of

pressure at point A).

Equations (3-47) and (3-48) are applicable also for other supersonic values

of the speed before a wave of rarefaction, larger than unity but here initial

* angle of reading is determined by the formula

*a, = arcsin V -(12 - 1)
and line of reading is placed not perpendicularlT to the direction of undisturbed

flow, but at an angle 51+-am, to it.

Of great practical interest is the possibility of determining the shape of

streamline within the limits of a wave of rarefaction. For the solution of this

problem it is possible to use the differential equation of streamlines of a two-

dimensional flow in polar coordinates
de" rd
U, Co

In using formula for If and A, we obtain:

d In r = WTs v(r )de 
IB.

After integration we obtain the expression

re ([cos (ml - (3-50)

,6//
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where r 0 is the radius vector of streamline at 0 0.

From equation (3-50) it follows that all the streamlines within the limits

of the wave of rarefaction are a system of similar curves; the distance between

neighboring streamlines in accordance with basic properties of supersonic flow

increases in the direction of the flow.

As has already been indicated, the flow arouid an angle point by a supersonic

flow is potential. Components of the speed or, a 0 , can be expressed in terms

of the potential of speed: o, O;

Hence after substituting cr or c and integrating we obtain:
Se~~e..•.1,0 sin (,,,).(:-)

Fig. 3-20. Diagram for 0
determining angle of de-
flection in wave of rare-
faction.,

ft shall dwell in the conclusion on the method of calculating the angle of

-deflection of a flow & . From Fig. 3-20 it follows that with a known pogitic-

of boundary characteristic Am'2 the angular deflection is determined by the formula

a 'i, + -- (3-52)

BY bearing in mind that

*and according to (3-47)(k )- -iO

~we obtain: FVk-±1ars1n(1/=(1IA -(k-= aresin -
I~~F_ 2i .t'..

:'- rc i 0 4+ r,'D ' ''i+ +

~~~ 04. . 1•t



By applying known trigonmetric transformation, t"" (3-53) we find:
* 8V/h±"+". arcsin kI k I)- (-

-Vo (3-53a)

The magnitude O can be presented in relation to H2 or p2 /Po. Corresponding
values of & for three different indices k - 1.351 1.3 and 1.4 are shown in
Fig. 3-21 and in the table of functions of isentropic flow (See Appendix).

H.. - - -
AV

0!,
WIS

Fig. 3-21. Change of anglea and 0in relation to ratio of the pressures.

.A ximum angle of deflection a corresponds to a maximum speed of flow
.Aax (or p2 /po - 0). In this case, as wau already pointed out, a2 - 0 and,

oonsequently,

I~A~T



or by taking into account (3-49) we obtain:

3-7. Diagram of Characteristics

By using equation (3-53), we now consider the change in speed along a certain

streamline EFH (Fig. 3-22). let us assume that the speed of undisturbed flow

before angle point A A1 w 1. Beyond the angle point the pressure is p2 0 O. Thus,

along the streamline EFH there occurs a continuous expansion of the flow from P1

P* to P2 " 0;

Fig. 3-22. Hodograph of speed vector in
flow around an angle by supersonic flow.

here the speed of flow increases from X - 1 to A2 - AM"O At eaoh point of

streamline one can determine the magnitude and sense of the speed vector ) * We

shall plot these vector& from a certain center 0. Then the ends of vectors will

describe ourve-hodograph of the speed for a given streamline.

Ift note that points of the hodograph of speed E'F'H' correspond to points at

the .UH streamline. It follows from this that the sector OV - Is and the sector

.(y'=11-- • .Equation (3-53), expressing the function A ( ,), is the equation

* of hodograph of speed in polar coordinates. According to (3-53) hodograph of speed

is an epioyoloid.

We shall dwell more speoifioally on certain properties of a hodograph of speed.

L IIII II II lil lili = '



'We ha.f. draw in the plane of flow the characteristic AF, intersecting the stream-

line EFH at point F (Fig. 3-22), and we shall find in plane of hodograph the point

*:Ff corresponding to it. This can be done, by drawing fron point 0 the line of

speed vector A P at an angle 6 F to direction of flow OEI. The sense of the vector

xF coincides with the direction of tangent to streamline at point F, In

displacement to an infinitely close•y located point Ff, the speed of the flow

varies by dA F (angular deflection changed by d I ). Anglo between tangent to

hodograph at point F and speed vector can be found by the equation

The magnitude is determined by diffsrentiation of the equation (3-53);

we obtain: Td4t= -~ dl.1_17- " .r,

Consequently,,d : di

It is obvious that

The angle between the normal to the hodograph F'A' and the direction of the

undisturbed flow OP' is equal to: ~
Oreor 

si 4 0

Conssquently, the normal to hodograph of speed F'AO is characteristic in the

plane of flow, since angle of this normal with the sense of the speed vector is

equal to angle of slope of characteristic a.,. From this follows the obvious

conclusion of the mutual orthogonality of characteristics and tangents to bode.

graph of speed (Fig, 3-22). Line of hodograph of speed B'F'HtL' is called the char-

acteristic of flow in the p e g hodTogr (plane u, v). It should be emphasized

that all streamlines have a common hodograph of speed, i.e., form of characl0eristic

in plane of hodograph does not depend on character of flow and is identical for all

two-dimensional supersonic flows of gas with given physical properties.

"* Just as in field of flow, in plane of hodograph it is possible to construct

two characteriatics, symmotrical with respect to the axis, which refer to two
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different families. For the solution of a number of practical problems it is

convenient to use grid of characteristics of first and second family. Totality

of characteristics of two families in the plane of the hodograph is called the

diara of characteristics. The diagram of characteristics can be constructed

by equation (3-53) or graphically.

Graphic method in based on the following consideration. We establish the

character of the relationship between the speed vector and angle of slope of

characteristic a . We note that in the plane of hodograph the supersonic region

is included in annular region between the two circles (Fig. 3-23). The radius

of internal circle is equal to X - 1. External circle has a radius, equal to

Y As has already been indicated, with a change of speed from A - 1 up to

AN l-+ angle of elope of charaoteristic varies within limits from

to am - O.

In considering that
sin' a. M - •

and x'x + V6 where ,.% ,.j .,n we arrive at the equation

Thus, dependence Xm ( ) in polar coordinates (A ,qg) is expressed by the

ellipse equation. Length of minor semiaxis of ellipse is equal to unity, length

of major smia•is in equal to

We shall place the ellipse in plane of hodograph (Fig. 3-23).

Thu sector, connecting the center 0 with a certain point on arc of ellipse P,

determines the speed vector A ai scale of the construction. The angle between

veotor A and major semiaxis of ellipse is

equal to •

It is obvious that the major semi-axia

ON gives the direction of the characteristic

in field of flow, and the minor send.axs OL

the direction of characteristic in plane
Fig. 3-23. Diapram for constructing
characteristics in hodograph plane.
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of hodograph. Consequently, sector 70, parallei to OL, is tangent to the char-

* acteristic in plane of hodograph at the point F.

By drawing at several points of the ellipse sectors, parallel to the minor

axis, and by rotating ellipse around the center 0, we can construct a group of

characteristics of the first family in the plane of hodograph PFJ, PIFIJ' et cetera.

Since in the rotation the ellipse passes over each point of annular region

twice, then there readily is drawn another group of epicycloids, composing the second

family of characteristics (dotted curves in Fig. 3-23). Characteristics of the

second family are the mirror image of characteristics of first family.

The hodograph of speed can also be obtained by means of rolling without

slipping of circle with radius 2 (i'Z-V s) long inner circle of annul~ar region

(dashed-dotted circle in Fig. 3-23).

The diagram of characteristics in plane of hodograph is used for approximate

calculations of two-dimensional supersonic flows. For this purpose in the plane

of hodograph there are drawn sectors of the characteristics of two families at

an identical and fairly small distance from each other. For practical use, the

portion of annular region, located in sector with a 700 angle is sufficient. Each

epicycloid is appropriated a specific number.

We note that any circle in plane of the hodograph is a line of constant

modulus of speed, and any radial line, proceeding from the center of 0, determines

the sense of a speed vector at a given point (Fig. 3-24). The internal circle

is subdivided into degrees; reading of angle will be made from the horizontal axis

of plane of hodograph (positive angles are plotted upwards, mid negative- downwards).

Every epicycloid is appropriated a number, showing angle of radial line, as whose

extension the epicycloid under consideration (Fig. 3-24) serves. Epicyclolda

of first family, proceeding upwards, have the subscript 1 (i01, 201, 302 etc.);

proceeding downwards, they are designated correspondingly by the subscript

2(1 21 , 2CIi 03oe)



Fit. 3-24. Designation of characteristics
and d1rclus (lines C -onMt) in diagram of 0
oharaoteriotios.

The circles (lines X ocnst) also are designated by a specific number.

With an acceleration from X w 1 up to a given value A the flow is deflected at

a certain angle 5 1 which can be found by superposing the two radial lines inter-

ceoting the characteristic in the circle of radius A - 1 and in circle of radius

A (Fig. 3-24). Along the circle the angle of deflection 5 maintains a constant

value; it is equal to the halfaum of numbers of the epicycloids of the two familiess

intersecting on the given circle. If the number epicycloida of both familles do-

creases or increases by one and the sawe magnitude, then the point corresponding

to It in the plane of hodograph in displaced along the circle.

Baoh circle in the diagram of oharacteristics is designated by a number,

-showing the sum of numbers of the epioycloids [having a different sign (±)) or

"difference between numbers of the epicycloids [having an identical sign (+ or -),

intersecting on a given circle, and equal to twice the anqle of deflection of
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- .- - 4L Fig. 3-25. Excaple of calculation of super-

sonic flow along curvilinear wall by method
of characteristics.
a and a -- plane of flow; b -- plane of
hodograph of velocity.

flow in the expansion from A - 1 to X corresponding to the considered

circle.

Below there are presented examples, illustrating the methodology of using the

diagram of characteristics.

Thus, in Fig. 3-25a there is illustrated the flow around a convex curvilinear

wall by a two-dimensional supersonic flow. For an approximate calculation of the

flow we shall replace the smooth line of wall ABOD by a broken line; each sector

of this line (ABp BC, CD) is rotated by an identical angle, equal, for e*xmple,

to 5o. Before the characteristic Am, there are known speed of flow A 1 1.227 and

the corresponding angle am. - 500 37'. In the plane of hodograph (Fig. 3-25,b) to

.this charaoteristio corresponds point A', which in the diagram of oharacteo-istics

"can be selected arbitrarily in circle 10, corresponding to a speed A I - 1.227.

We a all take this point at the intersection of the characteristics +52
.

-51
In the transition to region 11 the flow is deflected by an angleof 5-1.,
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By following along the characteristic + 52 in plane of hodograph, ve find the circle

passing through point B' (n~umber of circle in equal to 15, the sum of 5 and 10). 0
the corresponding speed in region IIA 2 - 1.344 and angle ,.- 42 541. B

ceeding to region III and further to region IV, successively we find in diagram

of characteristics the points C' and D' and the corresponding speeds of flow A

and e4 and also em, and a."

Completely analogously there can be made a calculation of flow around a con-

cave wall (Fig. 3-25,c). If speed before Dm1 is equal to A1 - 1.539, and the angle

of rotation of sectors DC, CB, BA are identical andas in the case "a•' are

taken equal to 50, then the variation of speed and direction of flow in regions

I, XI, III and IV are found by the diagram of characteristics, b7 crossing along

epicycloids + 52 from the point D' to the point At.

3-8. The Intersection and Reflection of Waves of Rarefaction

In Fig. 3-26 there is presented diagram of the intersection of two waves of

rarefaction, forming as the result of changes in the directions of the channel walls

at angles of &p, and 6 2' respectively.

Since the angle 62 453, then the wave BCD has smaller intensity in comparison

with wave ACE. If we assume that at all points of region I, the speeds are Idea.

tical, then the first characteristics AC and BC have an identical angle of slope

to streamlines of undisturbed flow. In region II there is established a pressure,

that can be determined by formulas in Sec. 3-6. To the right of characteristic AE

the pressure p3 will be less than P2 . since flow traverses a more intense wave of

rarefaction ACE. In sones II and III, the streamlines acquire a direction, parallel

to the walls AA1 and BB l, Following this, the streamlines once again intersect

"sectors of the waves of rarefaction DIXF and EFGH, which are a continuation of

,waves ACE and BCD. Here the pressure of flow lowers to p4, arn the speed corre-

spondingly increases (a>iy > . > I). 0
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* db At the intersection of the waves DIKF and EIMH the streamlines are deflected

In opposite directions; here the streamline a - a is rotated at a larger angle,

than the streamline b - b. To the right of K1G the streamlines have an identical

direction and are deflected at an angle A a 1 -62 from initial direction,

since the intersecting waves have a different intensity. The resultant deflection

a',

;i_, &"'

I ig. 3-6. The reaction betwecwn two waves

of rarefaction.

of flow occurs in that direction, which is dictated by the more powerful wave,

- tin the given case by wave AJKA.

Paraameters of t~he flow beyond the system of intersecting waves (region IV) can

be determined by formulas, presented in jreceding paragraphs. The constri.&tion of

spectrum orfl•ow and determination of parameters in ions of intersecting waves can

Sbe realised by means of the diagram or characteristics.

0|

Il! /

L~Af (Ad • JiV:•• iiP4 ii ii



We now consider the intersection of two pairs of characteristics (Fig. 3-26,b),

where the parameters and direction of flow in region I will be considered given.

The magnitude and direction of speed in this region are determined at that point

in plane of hodograph, at which the epicycloids of the two families intersect.

Suppose for the considered example, the number X in region I is equal to 1.522,

and corresponding epicycloids have the numbers + 202 and 20, (+QP) (number of circle

40). The direction of the flow in region I coincides with direction of the radial

line 0 (See diagram of characteristics). In the trasition to region II, the flow

intersects the characteristic bl, where we assume that in the transi.tion through

this characteristic the angle of deflection of flow amounts to 10. Then, in being

displaced along epicycloid 20, we find in the plane of the hodograph the point

corresponding to the state of flow in region Il (+2). Analogously we find the

magnitude and direction of speed in sone III after the intersection of the character-

istic a1 The corresponding epicycloids have the numbers + 222 and 231(+22). In

the transition into region IV, the deflection of the flow occurs in opposite di-

rection by the sam magnitude (10). In this case, in being displaced along the

epicycloids -- 2210 we find the magnitude of the speed in zone IV, which is deter-

mined by the sum of numbers of the epicycloids + 24 2 and -22 1. The transition

to region V from region IV is associated with a turn of the flow by an angle of 10

in the opposite direction. Simultaneously, there occur3 a subsequent expansion of

the flow and the sum of the numbers of eplicycloids increases. To this sone corre-

spond =picycloids 4 The speed of flow here amounts to Av M 1.558. The
~24 1

successive transition through characteristics of rarefaction in the diagram of

characteristics is shown in Fig. 3-26,c. Here the points I', III, III t •otcocorre-

*pond to regions I, II, III...in Fig. 3-26,b. The considered method of constructing

the flow in the zone of intersecting sound waves is approximate. At the base of the

method there is posed the assumption that at the intersection of each characteristic

the flow is turned and expanded by identical magnitudes, i.e, all waves have 'an

ir I
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.identical intensity. Within the limits between neighboring characteristics, the

parameters of the flow are considered constant.

B y the indicated method it is possible to calculate the flow in the quadrangle

CDF3 (Fig. 3-26,a), within the limits of which an intense expansion of gas and a

deformation of the streamlines occur. In this region, the characteristics are

curvilinear. If both interacting waves of rarefaction posses an identical intensity,

then the quadrangle CDFE is symetric, and a deflection of neutral streamline in

none IV does not occur.

Thus, we see that as a result of interaction between waves of rarefaction an

expansion and acceleration of the flow occur.

Of practical interest is the case of reflection of waves of rarefaction frcm

wall arfree boundary of the stream. The first case is shown in Fig. 3-27,a.

//

S...... ••-''-"•Fig. 3-27. Reflection of wave of rare-

.- • faction from flat rigid wall.
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At the intersection of primary wave of rarefaction ABC, the streamlines, in being

deformed, turn at an angle 6 . The ?irst characteristic AB is reflected fromn the

wall, where the element of reflected wave M) intersects the primary wave of rare-

faction. Consequently, along M, the pressire must drop, and the speed - increase.

To such conclusion w arrive, in considering the behavior of streamlines immediate-

ly along wafl: here during continuous flow around the streamlines are parallel to

the wall and, consequently, turned at angle b to the streamlines, located beyond

the characteristic AD. Such a deflection denotes a rarefaction of supersonic

flow. Hence, we conclude that the wave of rarefaction is reflected from flat wall

in form of wave of rarefaction, i .e., maintains the sign of influence on flow.

It Is readily seen that the reflected characteristics comprise with the di-

rection of wall, an angle, less than the anle of correspooding primary character-

istics, since the speed beyond the point of drop increases.

With distance from the wall angle of reflected characteristic decreases in

connection with the fact that characteristic intersects the region of rarefaction

(in sector BD), and along the characteristic the speed increases. It follows from

this that sectors of characteristics, lying within the limits of the primary wave

of rarefaction, will be curvilinear. Only beyond the last characteristic DC do the

reflected characteristics become rectlinear. An analogous conclusion can be made

also for sections of primary chaiýacteristics AD ', et &l.

In the transition through primary and reflected waves of rarefaction the flow

expands: the pressure drops, and the speed correspondingly increases. Parameters

of flow in sone II are determined by known values A Is p1 , al, A . Parameters of

sons III can be found, by considering that angle of rotation of flow in reflected

wave KDCF in equal to b . Then, after determining A 20 P'2) &2 by th aeforwna

wie find A 3, P3 &3.

The construction of the reflected wave can be made by using the method of

characteristics. Thus, for example, let us assume that in the transition through



haracteristic AB, falling on wall at point B (fig. 3-27,b), the direction of speed

changes by 10. If speed before AB amounts to A i 1.522 (epicycloids -20 ), then
.20

in the zone ABCA the numbers of corresponding characteristics in plane of hodograph

are equal to± (A - 1.532). At the intersection or rflected wave BC, flow
S-22, .11

is reverted to initial direction and, consequently, in this region magnitude and

direction of speed are determined at the Point of diagram of characteristics
.22 1 . )

.AN

4

-I f's Fig. 3-28. Reflection of wave of rara-
faction from a free edge of the stream.

The transition from zone II to zone IV results in a new change of magnitude

and direction of speed, corresponding to the characteristics !a2( X - 1.558).

As a result of intersection of reflected wave BD the flow is deflected in an

opposite direction (wave of rarefaction) and its characteristics will be 122,7( X v"
-24

1.575.. Finally, beyond the second reflected wave BIID, the magnitude and cidaetionI

of speed correspond to the characteristics 2.2i( Avjr 1.595). The position of the
-241

corresponding points in the diagram of characteristics can be seen in Fig. 3-27,c.

* Analogously it is possible to consider the reflection from the free boundary of

stream of wave of rarefaction ABE, forming during flow around the exterior angle

0 (Fig. 3-28). Characteristics,by not penetrating into external medium, are reflected

,. llU



from the edge, where the streamlines and edge of stream are distorted. Along theII
wave AB, pressure is equal to pressure of external medium pa; after last wave

P~l < Pa. However, directly on edge of stream on external side the pressuro, temp-

erature and speed do not change. Oensequently, if along the sector of characteristic

BF the pressure drops, then along FE it increases. But the sector FE intersects

the reflected wave. This means that in the transition through the reflected wave,

the pressure increases up to the value pa.

Hence we conclude that wave of rarefaction from the free edge of stream is

reflected, as a comnpressional wave, Characteristics of the reflected wave converge,

This is obvious, since the angle between reflected characteristics and the edge

remain identical (at points B, C, D, E - the pressure, speed and temperature are

identical).

In reflected wave, the compression of the gas occurs gradually (without dis-

continuity), and change of state is isentropia,

The construction of the process in waves of rarefaction and compression in the

diagram of characteristics is' shown in Fig. 3-28,b. The points I', I', 2', eta.,

make it possible to determine the magnitude and direction of the speed in the

regions of flow I, I, 2,etc., (Fig. 3-280a). By intersecting both waves, flow turns

at an angle, equal to 2 8

Thus, we see that the reflection of waves of rarefaction from a free edge

occurs with a change in sign of the influence on flow. As a result of the inter-

action of wave of rarefaction with the edge there occurs a deflection of the stream.

Principal distinction between properties of reflected waves from wall and a

free edge is explainedfinally by the fact that along streamlined wall distribution

of the parameters of flow is dictated by the flow itself, while on free edge it

is given by external medium.

The considered examples of interaction of waves b•y no moans exhaust

range of problems in this region, with which one ast encounter in the practice of



.. experiment and in theoretical investigations. However, these sxamples can be
"suWed as the basis of a study of othor, more complex cases.
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CHAPTER 4

COMPRISSION SHOCKS

4-1. The Formation of Shook Wave.

In the preceding chapters, we considered properties of an isentropic gas flow.

In this connection we studied the mechanism of propagation in flow of such disturb-

anoes, which do not cause a change in its entropy. Wl turn now to a study of finite

disturbanoes the propagation of which is acompanied by an Inorease of entropy of

the gas flow.

Fig. 4-1. Supersonic flow of gas into

a region of higher pressuue.

For this purpose let us consider the notion of a supersonic flow along a flat

well AD9 flowing into medium with higher pressure (Fig. -.1). To the left of point

fl the speed will be ol, pressure pi and temperature T1 , To the right of point B

(after line BO) there is maintained a pressure p2,0 higher than p1. If the difference

between pressures p2 - p1 is small, then at the point B0 a weak oomprossionai wave

.- develops . I o
• . . . . . . . . . . . .. . . .. . . . . . . .. . ... . . .. . 0 . ... .. ..

'' 1 P•['l'l:,I( P I//JPI



S ngse In pressure a. :.nlrt B becomes finite, then, as the experiment shows,

the ways wl±2. be transferred to the position BK and will possess not a infinitesi-

0 aisily smu bt~t a :1Anite intensity. Avo: ,Yrg to the degree of increase in pressure

the line BK will be d$flected to the left •Ath respect to point B (BK', BK"

etc.). In the transition tbrough wave BKE the gas is compressed and flow is deflect-

ed at a certain angle 8 upwards from direction of the undisturbed flow AB. With a

rise of p2 s the cae ssion of the gas in wave BK and the angle of deflection 6

increases

Fig.4-2.Flow around an internal angle
by a supersonic flow.

The wave BK is called & iDlae ob3lis~cuom2EseuiOn shook or. a Plane shock wave,.

In the transition through such shook wave the flow experiences i.ntermittent changes In

press'Jrep speeds and other parameters. The position of the shook is determined by

the angle 0 between plane of shock BK and the initial direction of flow AD (Fig., 4-1)o

The formation of oblique shock waves can be traced also in the simpjlest example

of flow around the wall ABCs deflected at point B at a certain finite angle 5

towards the flow (Fig., 4-2)

Owing to such a change in direction of wall, the section of stream decreases

and t.' streams controcts. In a ra personic flow this results in an increase of

pressure (p2 e e p l). eares, the increase in pressure occurs intermittently in the

transition through the surface BK, which is the surface of shook. It is possible to

show that during a flow around the considered wall, a continuous transitice from

parameters in region Ae to parameters in region KBC is phoysicaly impossible.

Actually, bo)indary of disturbance for the region A1K must be the sound wave

1I
0rn~intro h ufs 3( hc stesraeo hc.Z s|onbet



BK1, whose angle of slope to the vetor ,ý,' speed el will be arscen a-1. TheA_ cl

second boundary of disturbance BK2 has angle of slope a• - arsisn Si2. nce
02

a2< i and m2> al, then a > gml. The characteristic B found to be in the

undisturbed region ABK and the Wies of flow must have the shape, shown by dotted

line which physically is absolutely unrealistic.

It is possible to assume that an oblique shook occupies a mean position between

waves BK and B; 1 then the angle of an oblique shock f is associated by a simple1 '2
apptowdsate relationship with the agles am 2 and * :

S....( +a i,.+8).

We considered stationary case of the formation of an oblique shook wavep motion-

leses relative to the focus of the disturbance.

Such a case corresponds to the incidence of a two-dimensional supersonic flow

of constant speed onto en Infinite wedge or the motion of flat wedge in a medium

with a constant supersonic speed. In a non-stationary motion the compression shocks

may develop also at subsonic speeds of the motion. In the general case of a non-/ *
stationary motion the shock wave9 which Is the result of a finite compression or

rarefaction of the flow, can be displaced reltive to a solid body, which caused

the shook wave.

We shall analyze conditions of the formation of such moving shook waves. Suppose

in a tube of constant section there is a piston (FiS 4-3),. The thrust of the piston

causes to the left a weak wave of rarefaction m' - nip and to the right, a weak

compressional wave x -n. By continuing to increase the rate of piston thrusts,

we shall create a series of weak waves of disturbances (mr'1 -- 'ls m1 -- 1n0 etoo)#

beiM displaced in the flow of gas in opposite directions from the piston, each

with its own speed corresponding to the speed of sound in a given region.

I.t is readily seen that to the right each thrust raises the pressure of the gas

by a small magnitude, and to the left -- lowers it. Consequently, in region III the

lpressureand temperature will be higher than in regions 11 and Ip and oonsequently,-

I'I

L - •
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speed of sound anl.>aJ3 >a1 . ConverseL•ys in regions II', III' the speeds of sound

'will be less than in region I (al, < ail < a'). Consequently, to the right of

V •the piston, the weak waves of compression overtake one another; to the left the

waves ot rarefaction will lag behind each other.

After a eertain interval of time, waves to the right coalesce into single wave,

the front of which will be boundary between the undisturbed and disturbed regions.

a'A_ _ • •'• , I , *...

Fig. 4-3. Propagation of weak disturbances In a tube.

- "

4-2. Eauation of Oblique Shook

Au also previous3, we shall consider a flow of gas which has been established

without a heat exchange with the environment and without friction. We assume that

at certain point in the supersonic flow there appeared an oblique shook wave (Fig.

4-4). 'Gas parameters before the shook are designated by the sulesoript 1, and after

,the shock by the subscript 2.

Let us consider the motion of a gas along lines of flow ABC, interseotJmg the

plane of oblique shook at point B. As has been pointed out, in the transition



through an oblique shook thi Une of flow is deformed, as it is deflected by a certain

angle 5 . The speed prior to and after oblique shook can be presented as compon-

ents normal to plane of shook (cn and an2) and tangent to it (ati and a2) and

thus triangles of the speeds prior to and after the shook can be constructed.

It is obvioun that I '

and+

For solving the basic problem on oblique shook, which reduces to establishment

of a connection between parameters prior to and after the shook and to determining

the losses arising in the transition through the shook, we use the fundamental laws

of mechanics.

Law of the consevation of mass - equation of continuity - for two sections

o a tube of flow prior to and after the shook oan be written out in the following

form, p8619 -=pCI. (4-1)

The law of conservation of momentum

sggation of vyiation of momentu--in a

projection onto the normal to the plane of

oblique shook gives:
q ' A,- A, = FACRI (Ca-- Ca.•)

,/ ' ,,' .+,.C<,=,.+,P4

Fig. 4-4. Diagram for deriving basic (4-2)
equations of an oblique shook.

In projection onto plane of shook we obtain:spi, , (to-e,,) o,0.

since the pressure along all surfaces parallel to surface of shook remains

.onotant. Consequently, 4 ......

"* .. I.... I r

•). ~ ~~~...... ............ ... ..... ...... ...... ao.......
*oil cis
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nh, th ageta
.fThu* the tangential components of the speeds prior to and after a plane

, oblique shock wave are identical.

S The law of the conservation of energy -- rnoulli's _ _tion--an be used in

any form known to us. The considered flow occurs without a heat exohange with the

snvironment and, consequently, total energy of the flow is kept constant:

k'S P

""' +I Of (4-4)

I& ShaU find a connection between the speeds prior to and after the shock.

If shall transform equation (4-2); by taking into aooount formula (4-1) we obtain:
tA -+,•, •,÷" (4-2a)

Prom the equation of energy (4-4) we sha•l express ratio of the pressure to

S(4-4a)

• -- ft ÷L~'-

(4-4b)

After substituting (4-4a) and (4-4b) into the equation (4-2a), we obtain:

h-I i c11  - tc,
After simple transformations we arrive at equation

e,,•, 3za; h-I 45

Formula (4-5) establishes a connection between normal components of speeds

during transition through an oblique shock and is the original for obtaining depend-

enoes between other parameters of the flow prior to and after the shook.
2

W shaln replace in formula (4-5) a% according to the equation

.. ..... ", a•,--, (c-,+c) ••+" - -. .an• 2

>(4

' mi j(,-,C4, +k 1,..;

O i. ., -,tr, _, ,l A - ..



or by expressing the speed of sound in terms of the pressure and densitya'---

we shall obtain: Ld p des2

We shall use the equation of continuity (4-l); by squaring both sides of this

equation:,=

and by substituting pk a'd p -k ,

we obtain: p, pops

By eliminating levooessively from equation (4-?) by ,means of equation (4-8) P

and P2 or P1 and P2 ' we arrive at the oxqessions

4 2 _ + 2 )7.A +- C2-2 (4-9)
and

+ (.. , 2 ,,.(4-10)T I--or )+ .1M-,,-.-Y.i
From equation (4-6) and (4.6a) there can be obtained:

all __+ 2

• d .(4-n)
1--I -ai

From the triangles of speeds in the shook the obvious relationship& ensue:

Cd , sin 
(4-3;

0,=C, COSP- CA cosy.

where T' P--.

Then from equation (4-11) together with formulas (4-12) there can be obtained:

Sjj Mh s +n k-- I ...

M! $lo



7 -.. . . . .. .. .... ,..-. .. .

At cost'
1 2 1, os ~~ 1 *, 1 (4-11b)

Equations (4-9) and (4-10) together with equations (4-11) and (4-12) after

simple transformations give the sought relationships:

piskA +1 Ih -II

2k 2 s.ine h(-13)

F tT r to 2lat shi(4:

h. = li•'.ne ••

U -2 , -- _ -___ I _ o,, !

From equation of state there readi3y is found the ratio of the absolute temp-
spatures prior to and after the shook:

After substituting f and A we obtain:

T 1 2h (4,-15)

Msin,

Formulas (4-5), (4-13.) - (4-15) express variations of the parameters of gas

during the transition through an oblique shock wave depending on the coefficient k,

the speed of flow prior to shock M, and angle of oblique shocko. These formulas at

the same time reveal fundamental physical properties of an oblique shock. Thus,

frcm formula (4-1,3) it may be concluded, the normal component of the speed prior to

the shock is larger than the critical speed. Actually, since Al> and M sin' =

we conclude that 2k - k >r

and consequently, ,

Th* normal component of the speed after the shook is lover than the critical

speed:

STOP .... .. ... .. . . . .....
S)' P .,;J..SI'_" "t1$f
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From formla (4-13) it follows, in addition, that the angle of the oblique

shook is larger than the angle of the characteristic an,.

At
a. a, = arcsin

A Pa TPA

In this case, an oblique shook degenerates into weak (sonic) compression wave

(weak shook) and the angle of deflection of flow tends to sero.

The connection between the angles P and & in established by equation (4r.6)V

which can be transformd to the form: .- +.4 + 4.)
But on the basis of formulas (4-12)

• ,s= '•. € =• .•T•-'•(4-1.6)

Consequently, 2

In renembering that T5rx -)- A,

we obtain: P lIn' -- I
r 71- +1 sin$ (4.-17)

In Fig. 4-5 there are presented graphs of a ( ) at different values of X for

kc - 1.3. We note that with an increase in speed of the undisturbed flow, the max-

imum angle of def3ection of flow& . increases. It should be emphasised that in

accordance with double solution of equation (4-17) for the single value of the angleo

of deflection of flow there correspond two different p values. Experience shows

that only a smanler value of P corresponds to a plane oblique shock.

. .Above on the assumption that a shock occupies an intermediate poestion between

"characteristics of undisturbed and disturbed floani there was given the formula

.. 1 T('-, + 2 +8). (4-17a)

, ,: ... . . .. . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . ~ 0 . . . .

..........-.
I I I 1 I I - l I I1 I I I I I I I I o.



A comparison of this formula with the accurate expression (4-17) for several

values of Al is given also in Fig. 4-5. The curves show that with an increase

;in speed before the shock x the divergence between results of the calculation by

accurate and approximate formulas increase,

F i'

Pis. 4-5. Relationship between the
angle of deflection of flow and angle
of shock at different speeds in
Undisturbed flow (for k - 1.3).

-~ accurate foximula. (4-17);
approximate formula (4-17a).

The magnitude of the error depends also on 5

From equation (4-17) it follows that 6 0 at a and atp -L. Thus, the
21 2

curve S S() has a meximum., the location of which is determined by the ordin-

ary method. After differentiating equation (4-17) and equating the derivative to

- C

ero, after transformation we obtatin:

of chek +t d1)een sped + y4+-Ind -tred•o fr .)

where A s the angle ot oblique shock, corresponding to mn .m angle of

i ro euaio (-1) t olow tAP t#-alad t • hs h



deflection of flow bm.

If follows from this that at H1 1, the angle • - and at 11 , a Pthe

(v'!P-).. For intermediate values the angle with an

-increase in M, at first deoreases, and later increases somewhat.

Equation (4-1la) makes it possible to trace the change of speed of flow after

the oblique shocksMe Hdepending on M, and P . With an increase in P (with a con-

stant •)9 N2 decreaaes; the drop of speeds in the shock increases.

At a certain value • - speed after the shock becomes sonic (4 - 1). With
2

a subsequent increase in 0 the flow after the shock will be subsonic.

The magnitude P* can be determined by equation (4-1la), by sub"P+,ituting M2 1

Then, after transformations we obtain:

s1n1A=_ rk+ [ 24 3-kYI ~~ ~~ +,+++ ..
+ 1 (4-19)

We note that at j-1, the angle I- ;at M s-e thean e ang

To the last value of 0 there corresponds the maximum angle 6 m, determined from

"(4-17): a,.= aria( L).

For the values Mj< oa, the angle 0. > P* and, consequently, Mr < 1. This

means that at the maximum angle of deflection of flow, the speed after the shock 21
will be subsonic. Since, however, for all 1 the angles Pm and . are very close,

then as a first approximation it is possible to assume that the maximum angle of

deflection for each value of the speed of an undisturbed flow will be attained at

a sonic speed after the shock ( I • 1).

We established that the parameters of flow after an oblique shock depend on

angle of the oblique shook • . With an increase of I , the pressure, temperature,

and density of the gas After the shock increase (parameters of flow prior to shock

are assumed constant), and the dimensionless speed decreases. The angle of deflection

,of flow, as has been indicated, at first increases (at t< Pm), and then it decreases

__' PL'+ h,+++ ~,TP +' +L '

- /.11
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(atpp)

In the particular case variations of the paraneters in the shock are

found to be maximu, and the angle of deflection & - 0. Such a shock is located

normal to the direction of the speed of undisturbed flow and is call a normal shok.

A normal shock is a particular case of an oblique shock; the fundamental

equations of a normal shock are obtained from formula (4-l2) - (4,-15) dfter

substitutingO - . .
2

Variations in pressure and density in a normal shock are found from formulas

(4-3) and (4.14 )t I kI

,, _ .. .. . k,,A, (Jg...2)

'T he ratio of the temperatures -- from formula& (4-15):

2k,- ,,,, ,. + ). (4-2.2)

The dimensionlems speed after a normal shook can be obtained by formula (4•-fl):

II
o'Tby rai ftetmeaue rmformula (4-15b)

it= -I~k_. 2k2 1(4-22a)

Tof a masi after a nomal shock ic al s smallr than the criticel speed (oa ( a).

Formulas (4- -(4-2) show that the intensity of a normal shook in:reaos/C Icwi-the sqan rea ispe of the rtin aedistured, flot (or allTe rtflostato sp tee

ýdensities at the .ma~dimum speed tends to m. finite limit.:

r TKbi' W........ . . . . .
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and the ratios of the prossvres and temperatures increase infinitely.

It is neoessary to bear in mind, however, that at high supersonic speeds, when

as a result of shocks the temperature and pressure of gas increase very intensive ly

the obtained formulas are approximate, since they do not consider the developing de-

pendence of the heat capacity on the temperature, the dissociation of the molecules,

and deviation of properties or real gases from properties of a perfect gas, the state

of which is described by equation (1-1).

Formulas of an oblique shook can be transformed to a form convenient for an

analysis of the influence of physical properties of a gas (coefficient 1). For

this purpose we shall introduce the dimensionless speed i a ! and will express

the coefficient of the isentropic process, in terms of the m aximum speed A_ 2.

After replacing k inlr equlations (4,]? and (4-.14) by its valueo we obtaiLn:

P, - T (4-.3a)

and

, ,+ _ (4-124)'+1
R sins F

The speed after the shock is expressed by the equation [forzu:la (4-3.b))

,I). (4-nb)-

where-wl

As is evident, each of the presented formulas contains two cofactors, one of

which depends only on • and p and does not depend on 6j and the, second is a function

Of onlyhe2

Such structure of forualas of a shock makes it possible to ovaluate approximately

................... /30
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the influence of change of physical properties of a &as and to make a calculation

of the parameters of an oblique shock with different constant values of k*.

For determining other parameters of the shook it is possible to use obvious

relationships. Ratio of. the temperatures

Angle of shock II

_ I I-AV i.

For calculating shooks at different t, there can be constructed p2 /p 1 graphs

depending on P (or A ) and k (Fig. h-6). The influence of JI can be evaluated

wtih identical P or S , A co•mrison with identical p shown that with a decrease

in k the intensity of the shook increases.

4-3. auLegk bLCQWvm

The relationship betwen parameters in a shook can be presented graphically in

a very convenient form. For this purpose let us consider the triangles of speeds

In a shook (Fig. 4-7).

N oe shall locate the vector of speed prior to shook aI along the x axie (sector

00). The sectors OF and FD ae, respeotively, the tangential a and the normal

ani components of speed prior to shook. By knowning the angle of deflection of flow

S, we draw the l•m of the

II

S.Fig. 4-7. Triangles of speed* on
shock.,

'speed vector after the shook 02 up to the intersection with section PD. The"

* .. Th. formulas are gIven by N. V. PolIkovskir.
. I . . ............ -.... .



1tntersoctiOn point (point E) determine value of vector c2, and the sector EF

exprNSGSe normal component of the speed after the shook.

The speed vector o2 can be presented by tv'J other components, %2 and 72. The

eooivnts u2 and v2 are projection@ of a. onto the direction of speed of flow

befxore the shook and onto the normal to this direction,

W shall find the equation of the curve described by the end of speed vector

after shook o2 with a constant value of the speed vector before the Rhock a, and

variable values of anUle of change in direction of flow after shook 0 .

In expesing this equation in form of a relationship between u2 andv2

shall obtain a curm of speed after shook in the plun of hodograph of speed.

For obtaining the sought relationship we use the fundamental equation of an

oblique shock (4-5). After substituting In this equation the values cn1 and at

!from faoraula (4-12), we obtain:
c,,0n1 p (=ain p-- i.Ti-:)-F-TCI cos' -2,,5)

!since Ms". 4-"

Stransform equation (4-25) to the following forms

CýOsm awP -C306TAW(32aJ 'p rC A Cos'P
Hence 1  bearing In Wnd that

* Fb4inail , a
w t ( C• c Us)"- U, (C-1,N) IV21 + (C& -us)'] (

.= 662 4- (CA--),] 1•V *--i,.

Curve, corresponding to equation (4-26), presented in F•Ig. 4-8, is called &k

ahook golar. The curve belongs to a class of hypociamoids. Shook polar can be
,1

widely usmd for calculating oblique shocks by the graphoanalyticai method and for

*ucertaining certain peculiarities of such shocks.

We shall turn first of all to the limiting values v2p being given by oquation

I S I V[T•-I-[ II



(4-26).

It Is reaily een that v 2  oat

arld Ues•C

The first case (u2 - 0) corresponds to a shookless process; an oblique shook

ave transforms into a wave of weak disturbanoe (characteristic). Tangents to

hypociesoid at the point D are located at an angle ask arosin 1 to the veOtor a

4 -? *W,
I'

FIX, 4-8. Shook polar in plans of hodograph.

not tht tispoint Is simultaneously a point of the diagram of characteristics

and thr shook pooar hors transforms into an spicyoloid,

30o0n s ('201."a%) oharaoterine the transition of an oblique shock into

& normal shook, the Angle of which A - . Point A corresponds to this oaes in the

hypocissoid.

From equation (446) it follows that, v2 can be reverted to infinity at

I as

It is obvious that branches of the h4pocissoid asymptotically approach the

straight line drawn parallel to the y axis at a distanco Ml CA

from the origin of the coordinates. These branches have no physical meaning, since

they give values of the speed after the shook (point E h•i Fig. 4-4) larger than
-prior to shook. A shook of rarefaction would correspond to such conditions, but

shooks of rarefaction cannot exist, By dimoarding the outer branches of hypbcissoid

,as physically unreal (see below), we note that the shook polar within ths limits



Sbetween extrWe points A and D gives tw% values for speed vector after the shook.
SFIRST Ii' J. ' i '

Usually plane shocks are realised at value, of th. speed vector of flow after

W a shook corresponding to the points 92 (W9g. 4-9ja). The second value of speed

02# corresponding to the points Hi, in a plane shook may be realised only under

special onditions.

C A

PIP)

Fig. 4-9. Separation and distortion of compression shook.

Ve now consider a supeorsonio flow of, gas along the wall LBO (?Ig. 4-.9a)

gradually inoreasing the angle of deflection of flow 5 (angle of change in direction

of wall at point B). At small values of a . *lose to sero, the disturbanoc of the

flow is all and speed after the shock Cci)±s close to the speed prior to shook (a).

lAccording to the does. of increase of & , point 12 (Fig. 4-90b) is displaced along

the shook polar from D to Lp where the point r gives a speed after the shook M2 - 1.

IA subsequent very imal.l increase in & brings the flow asfter the shook to a state

detormined by point K. Here the flow after the shook already is subsonic (X2 < 1)

land 6 will attain the mud== value .no.

In Fig. 4-10 there is presented flow around a wedge by a supersonic flow.

I1f the half-apoerturse angle of wedge & Is less than 6 I for a given speed Nl, then

on the tip of wedge there will ocour two rectilinear oblique shooks: AB and AB11

forming the so-called head Shock wavs of wedge.

a mnseequent increase of the angles > the shock emerges fran forward

oint and it im distorted (Fig. 4-9,0c). This is explained by the fact that the

speods,,of the propagation of the disturbances become higher than the speed )f flow.

0Aotmally, by increasing the angle of ahango in direction of wall A we thoreby

VCPMii JJO tit



increase the compression of flow, i.e. its pressure, density and temperature. At

the same time also the speed of propagation of disturbances, equal to speed of

sound of disturbed flow a2 - k&RT 2 9 increases, At > am this speed becomes higher

than the speed of the flow and therefore the disturbances penetrate forward along

the flow. However, with distance from the wall BO (Fig. 4-9,o) the pressurs, den-

sity and temperature decrease at the same time, the speed of progagation of

aI)

Fig. 4-10. Flow around wedge by a supersonic flow,

disturbances will decrease. At a certain distanue from the wall there will occur

the locus of points PQ (Fig. 4-9,o), in which the speed of propagation of disturb-.

a&nes decreases to the speed of -the flow. ObviousIy, beyond the limits of this

surface, the disturbances caused by wall cannot penetrate, since they wl.l be

moved forward by the flow. The surface PQ separates the eons of undistubed flow

from none of disturbed flow and it is the receding shook wave,

Consequently, if 8> ap then the plans oblique shook alternates with a curved

shock (4-1O), that is located not at the tip of wedge but at a certain distance

before it. This distance depends on speed of undisturbed flow H1 and 8 , With an

increase in H, the shook approaches the tip of body. With an increase of angle of

deflection at 5 > 8 the shook withdraw from the body.

The flow around rounded tip of body by a supersonic flow always w1il occur with

the formation of a curved bow wave, detached from the tip, and the distance between

wave and tip for central line of flow will depend on the speed M, and on the shape

of the tp.
I note that at 6 - Sk, the flow after the shook is subsonic and 2 i soehat

s w



:lose than unity (point K in Fig. 4-9,b). Since for a neutral line of flow

Sbranching at point A (Fig. 4-0)s -• and 6- 0, then element of the shock inter-
w2

secting this line must be a straight line, The speed of flow after element of

direct 3hook winl be determined by point A on shock polar (Fig. 4-9b). The flow

after the shock on this line of flow is always subsonic,

An sectors of the shooks except the central, are located at different angles

to the vector of speed of undisturbed flow <

In considering such a distorted bow wave, consisting of large number of small

rectilinear elements, one may be convinced that as the distance from the central

line of flow increases, the angle of slope of elements of shook Pi increases.

,Here it is possible to use a shock polar for calculating the flow after the shook

.for each streamline individually. To the sector of bow wave KL there correspond

points of the shook polar from A to L• in which speed M - 1. In this sector the

-flow after the curved shock will be subsonic. Consequently, if the bow wave is

detached from body, then in a certain region adjacent to tip of body the flow will

be suusonic (this region in Fig. 4-lOb is hachured), and the lines of flow here

.will1ave a different curvature. At various points after the shock the pressures

will be different.

With increasing distance from the point & there decreases the slope of shock

elements and~at the same time the shock intensity decreases. At a certain point L

the speeds after the shook becoms sonic. Above this point, the state after the

shock is detrmined by the sector of shock polar from r to D. At an infinite distance

from the body, a curved shock degenerates into a weak wave of compression to which

the point D on shock polar corresponds.

i._..... Thus, if there occurs a distortion and separation of shook from tip of body,

'then each point of shook polar characterises the state after the shock only for one

,line of flow, and not for entire region of flow, as takes place in the case of a

plane ahock. Coneequentlynot one point of the hypooinsoid, but its entire b:'.anoh

1II I



AD, corresponds to a curvilinear shock.

In the Table 4-1 m values for two values of k 1.4 and 1.3 are presented. The

values depend on M, ( A3) number and the physical properties of the gas (k)

and they may be determined by equation (4-17) under the condition of substituting

in it P - from equation (4-18).

TABLE 4-1

Values of Maxim Angles of Deflection of Flow in
a Plane Oblique Compression Shock.

1m.4 A-1.4 khml,

0 0 .7. 25015' 24042
1,2 5025 514' 1.8 285' 28018'
1,3 941' 9"30 1 9 3200(Y 310301
1.4 13:55' 13024' 2,0 3500(y 3401W
1, 18"00 17030' 2,2 4015' 3940W
1,6 21o41' 2*10 2,4 4*00' 438'5

4-4. variation of Entrow in Shock.

As it is known from thermodynamics, for an elementary process without heat

exohange with the environmon!, taking place in a perfect gas, the change of entropy

is determined by the equation R

since dr

then ds=i(e.Cd R (dp k dP\

By integrating this equation, we obtain .

or - (4-27)'

S0 . . . . . . . j .. 0 . . . J

S . . .. . . . ...... ...... (t ST/j IiI.=



For a reversible (isentropic) process As • 0 and

We shall examine how the entropy varies during a transition through a shock

wavo. After eliminating from equations (-13) and (4-14) M2 sin2 p" we obtain:

~.= (4-28)-- ,%~p { h+! -

By making a calculation, it is readily verified that for a compression shock

for which LL > 1, alwas A >(

and, consequently, according to (4-27) in the transition through a shock the entro•

of the Sas increases.

An increase of entropy during transition through a shook is explained by the

irreversible character in the change of state of gas in the shock by the "shock"

character of the process. As a result of such a process, part of the kinetic

energy of gas irreversibly changes into heat; if there is no energy exchange with

the environment the internal energy of the flow irreversibly increases. The curve

characterising the process, proceedine according to equation (4-28), is called the

shock adiabat.

For expansion shock h-< I and k-•-P C-< I we obtain As<O,which is impos5i-
ra PA ( IT )

ble if there is no energy exchange with the environment,, since it contradicts the

second law of thermodynamics. It follows from this that an expansion shock cannot

appear in a flow without energy exchange with environment, since this would con-

tradict second law of thermodynamics. It follows from this that an expansion in a

Chapter 3, in a supersonic flow the wave of rarefaction with continuous drop in

pressure is an absolutely stable phenomenon; entropy in the transition through such

wave is kept constant.

The change of entropy in a compression wave can be expressed in terms of the

-parameters NI~ and P by Pubstituting in equation (4-27) A~ and A' perII
for•ulas (4-13) and (4-14); then

<!•r• L'_;;t" )P It1R&?•
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Equation (4-29) Lakes it p ossible to conclude that a change in entropy in an

oblique shook depends on speed of the undisturbed flow XI and angle of the oblique

shook p. With a constant speed X 1 the entropy in the trmasition through shock

varies in accordance with the change of angle P . If the shock is rectilinear and,

consequently, along the shock P. maintains a constant value, then for &ll lines of

flow crossing the shook the change in entropy wifl be identical. If, however$ the

shook is curved, then the increase in entropy for each line of flow will be different,

since along the shook the angle p varies. This mans that after curved shook the

flow winl be vortical; after a normal shook the flow remains potential.

By using equation (4-28), it is possiblm to consider the change of state of gas

during transition through a weak shook. By assuming pa=p, p-=p and that the pres-

sure and density in the shock change by an infinitesimal.y small value, i.e.)
P,=po+dp; P,.-P+dp;

fro (4-28) we obtain:

Hence, by disregarding infinitesimally small terms of second order., we arrive

at the equation of the isentropic process:

Thus, the change of state in a shock of infinitesimally small intensity (weak

shook) is isentropic.

4-65. Comm ession Shook Losses. C ontracti the & on a Total
Beat tropy (t-sL Qia,•gamo ComSressio Shocks in a Rqa L 'A

2

• now consider in prater detail the energy transformations in shocks. In

ii,,,



rssum i n a flow without an energy exchanp with the @nvironmnt, we conclude that

the total energy of flow during transition through the shook does not change. This

ames that k A ± 4 _L +

or by using parameters of total stagnation,

d(4-30)

Condition (4-30) can be replaced by an eqivalent condition of constancy of

enthalpy of stagnation during transition through a shook:

I ~.(4-30a)

,or at go== ccast;

TO r T= Te. 4-30b)

By bearing in mind these conditions, let us consider the process of a shook in

an 1-s diagram (Fig. 4-11). By knowing pressure of stagnation prior to shook

and the enthalpy of stagnation 10, we shall find in the i-s diagram the point 0

characte•i•ing state of an isentropicelyv stagnated gas prior to shook. By the

known speed of flow prior to shook a, or the pressure p1 we find the point Do which

determines the state of moving gas ahead of the shook. In a shook the static pres-

sure of the flow increases to p2 . If there is known the angle of deflection of

flow and, consequently, P. then the state of the gas behind the shook is defined

'.(point E2 in Fig. 4-11), since by formula (4-29) there can be found tho increment of

entropy As*. We note that the line connecting points D and E in Fig. 4-11 does

not characterise the chanm of state of gas in a shock, since in a total heat-entrop7

diagram the nonquasistatic processes can be presented only by the initial aid term-

ial points of the process.

If the flow behind the shock is isentropicaUly stagnated, then the sta'A of

* r *A perfect gas is considered.

I IP t t
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total, stagnation is charaoterL sod by the point 02, at which there readilyt is found

the value p•. If we now grant the flow the possibility of being isentropically

:expanded down to pressure before the shook, then its state will be determined by

point It2.' The speed of gas here can be calculated by the equation of energy:
Ac?

.whers H*.ie the isentropic drop of the enthalpies behind the shook.

The magnitudeHo.an be considered as the sum

Hm=Hk + nk'

where H is the kinetic energy ot flow behind shook:
Ok 'A4

io I1 the changs of potential energy of flow in the shook:
On A (p?-

It is obvious that
ot.. < H,,.

Ac
,where M01 is the isentropio drop of onthLlpi•s before shook.

The losses of kinetic energy in the shook will be:

where Ah readily in determined by an total heot-entropy (i-s) diagram an the

!difference of tho enthalpiem it - i
21

The loss of energy is readily associated with the main paramters of the shook.
We shan ex.press Hot,• A [ -Psi=

I-N

and A pot N '*
PON)

Consequently, (--31)

aines

We shall introduce the concept of lois factor of energy in a shock:

Hot 1(4-~32)

;then after substituting H01 and H 0 obt~in: .

01 (433

"Iip'SI ,. .. . . r, , +-:_ •.m---I!:,,. -- ,U
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or by mans of (2421)
&---+I lr PON) (4-33 I]

The ratio hruus ohazracteriues• the change or pressure of total stagnation
po'

in a shook. This magnitude can be presented as a function of the parameters of a

shock M, and P i . l P
since P INN

then from (1-13) and Table 2-1 we obtain:

, 4 (L MT)( j-~M , 1(4-34)

Hence by means of (4-1la) we obtain:

a -fk+" ,P.2, 1) "
soiMW- E ! a -......... (445

I r\i-1 2k(Aej sIIno I + F"--T --- Atlin sla I-- 1)j'

Ws present, depending on the am&e parameters of the shock, the loss factor

:in the shook C., by using formulas (4.33) and (4-35) 1

4 4' h- , '), - 3 in'(-I)

After replacing the number M1 by A1 in formula (2-1), we shall obtain a

relationship in the form of: Py(a, i).

In Fig. 4-12 there is presented a graph of 0o and 0 in an oblique shookpde-

pending on the angle p and dimensionless speed of undisturbed flow A.1 for I - 1.3.

From the graph it is clear that the lose factor intensively increases with an inn-

crease in the angle of oblique shock and with an increase of speed A1, attaining

a maximum at P=._(norma1 shook).
5

*..Fr formula (4-33a) it follow that the lose faotor e. -0 at A -1 If
A i x F- + then formula (4-33a) gives an indetermination w;Iich readily

is expanded. '

Il, ,t .•/• $ .TOP rl RIh "
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During flow around a body by a supersonic flow, before body there appears a

shook wave (compression shock); during transition through this wave. the entropy

of gas increases, and the speed decreases.

Thus, in a supersonio flow of an ideal fluid there appears a special form of

resistance -- wave &a& depending on the looses in shocks and consequently on

the form and intensity of the shooks. As we have seen, the form of the shock and

its intensity depend on the shape of the body and speed of the streamline flow. In

considering that with a deorease in the angle of deflection a (a, consequently,

and p) losses in the shook decrease, it msy be concluded, that ouspate bodies in a

supersonic flow should possess a smaller resistance than round bodies.

The change of losses in shocks depending on their intensity can be traced in a

thermal diagram. The construction of a "shook polar" in a thermal diagram is con-

veniently made in the following manner.,

According to the parameters before shook p. and T1 we find the point D (Fig.

4-23) and at a known speed a,. the point 0l1 e are given a number of values of "

"from p ~ -arcein 1i to For each value of we determine and r A and

plot on the total heat-entropy (i-a) diagram the points 12' S"Vet'up to point

A, which corresponds to a normal shock. The locus of these points gives the state

of gas in total heat-entropy coordinates, corresponding to a shock polar. We note

that the obtained curve should be tangent to line of isentropio change of state O1D,

since during infinitesimally small disturbances of the flow the entropy of the gas

remains constant.

; For each point of curve (for example, E"l) there readily are determined: the

kinetic energy behind shock , the change of potential energy In shock

,.'and the losses of kinetic energy &h. At the same time here one can determine

* The corresponding curve in the total-heat entropy (i-9) diagram can b, called
"a "shock polar" only conditionally, since it is not a vector curve. The proiented

* construction is valid for an ideal gas.
p ,".' I ' I,)"t •' "'
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also all the pasametors of the shooki p29 T2 , 2P pM, a and thereb7y considerably

to supplemmnt the shook polar constructed in the plans of the hodograph. In the

plane of hodograph' the shook polar gives a kinematic picture of the flow (velocity

field); in a thermal diagram we obtain the characteristic of the energy transform-

aton@ In a shook and variations of parameter of the flow. One line DA there

readily is found also point , corresponding to - - 1. For this purpose we

.hall calculate the critical drop of the enthalpiess

and we shall plot it from the i. c oont.

The character of the obtained curve, turned convexly toward the i-axis, clearly

shown how intensively the losses increase with an increase of A and with approach

toward a normal shook.

For calculation the shook# it in found very convenient to use special. diagrams.

1#4'



:Soh diagrams make it easy to determine characteristics of a shook on the basis

!of two given paramters. In the supplement there we given diagrams of oblique

shocks for k - 1.3 and 1#-,.

The method of using & diagram of oblique shocks in explained in Fig. 4-14. In

upper right quadrant of diagrams there are plotted the graphs a - a ()avJ o --O0. corre-

sponding to different but constant values of speed before shook •,. On each ourve

there is inscribed the value 1,,. in parenthesess there is indicated the magnitude

expressed by the given curve. In left upper quadrant there' are presented graphs -

-- e(A)a,,A A- •(AJ for different but constant values of A,. In lower left quadrant

*thero is given the dependence of ratio of temperatures in shook on speed behind

shook rL, "(• ' In the lower right quadrant there are drawn curves of loss

factors of energy in shook ý,. () and the recovery factors of the pressures

**-.,(IX Thus, as a parameter, for acl curves of the diagram there was selected

ýths speed of flow before the shook a,.
We shall explain in an example the method of uoing the diagram. We assume

that we know the anglo of deflection a of a line of flow and speed of flow before the

shook A,,a On the curve 8 -3 0 q) we find the point A corresponding to the given val.

ue of a,. By projecting this point onto the horisontal axis, we shall find at

point A the angle of the oblique shook 1,. On curve c.! ) corresponding to the

same value X,, we obtain the point A,, which det-ermines tho ratio of the densities

to,%- Knowing A, and a,' on curve 8 8, in the left quadrant we find

the point B1, which determines dimensionless speed behind the shook A,, Pro-

seeding with the same value of X, to the curve •' 7•(A,) we obtain at point B2 the

ratio of pressures in the shook It. At point C on the curve r- we determine
A t - A

the ratio of the temperaturesT, By projecting the point A onto the 3ines

C a#- C m) and ., -- me(P) at points D1 and D2 , we shall find the values of the coeffioiat

*A, Ye. Zaryankin calculated the shock diagrams.
O N*I l '
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Fig. 4-14. Method of using diagram of oblique shocks.

of energy losse* and the pressure recovery factor. The considered diagram makes

it possible to calculate the shook by any two parameters. Thus, for example, the

given parameters may be X, and I; and s;o and p et cetera.

The thermal diagram is convenient for calculating a ccmpression shook in a

real gas and, in particular, in moist vapor and dissociating air. Parameters or

the flow before the shook and the angle of deflection in a shook usually are known.

Being given a number of values of the shock angle, it is simple to find the

corresponding values of normal components of the speed:

By the fundamental equations (4-l)-(4-4) there are determined parameters be-

hind the shook i2U, P2i and specific volume v2 i, corresponding to the current

value Pi. The *ought solution can be found on a total-heat-entropy (i-4) diagram at

the point of intersection of two curves, one of which is constructed on the basis of

theparameters i 21' p2i and the second by i2i, v2i (Fig. 4-la). From the diagram

are taken the values of 12s p2 s '2; real slope angle of the shock is determined by
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the formula •zz) /~t*PII*' 2tMS/

where .. Lu

This problem is solved by %eans of an auxiliary graph, on which there will be

plotted the curves YO'2 (2 P) and vzi (P) (Fig. 4-13b). Pbr constructing the second

curve, it is necessary on a total-heat-entropy (i-s) diagram to convert from values

P2 and i2 to values v'2. The solution is obtained at the point intersection of

these ourvem, where there are determined v2 and 0 and correspondinmly all the re-

maining parameters behind the shook. In pa'rticulars the speed behind the shook

WnI

4-6. Intersection of Shocks.

We now consider certain practically important cases of the interaction shocks.

Two conaeoutire changes in direction of wall ADJD (Fig. 4-15,a) at angle

S result in the formation of the two obliqus shockst BK and OK. The angle of the

second shook P,>Pl, since after the first shook the flow has a speed As< . As

a result, the shocks intersect at point h. After the intersection point both shooks

merge into one shock IF. The streamline intersecting a system of two shocks is

deformed as it turns at points b and I at an angle Z; at the Intersection of the

shocks the speeds of -the flow decrease and the pressure increases intermittently.

Considering the streamline KH and assuming that penetration of part-

icles of gas from region 4 into region 39 and, conversely, from region 3' into

region 4 does not occur, it may be concluded that in the Indicated regions the

pressures and directions of the speeds should be identical (a transverse pressure

gradient is abtent). But if it, is assumed the direction of the streamlint, behind

shook IF is the same as behind the second shook CK, i.e.o0that the total do'flection

of the streamline amounts to 28 , then pressure in regions 3 and 3' will 141 different,

0 since the streamline • has passed through two shocks and the streamline Ml only

,. . . - . . . .... . .



through one shook. Conaequently, the loss in the first case wi1l be less than in

lk N

Sb)

Fis. 4-15. Interaction of -two suooessively distributed oblique shocks.

the second (during om]pression with an ifinite numbeor of shooks of infinitesimal'

small intensity the process will be iuentroplc-without losses).. where p. a be

smaller or larger than p' V Hence, it may be concluded that region, of flow 3

and 3' are divided by a weak wave of rarefaction or a weak shook wave KL, at the

intersection of which the flow acquires a pressure p4 ! p'3. The intensity of the

wave KL on this assumption readily is determined. Actually,, knowing the angle

8 and ,., we find the pressure p. behind the shook KF. We know the pressure

pas a result or calculating the shocks BK and OK. The ratio &j gives the
3~

intensity of the reflected wave KL.

In a general case the angle of deflection of flow at points B and C may be non-

Identical* Depending on the relationship between angles a, and as (3, -- deflec-

tics in the first shook SK and b, the deflection in the second shock CK) and total

angle of deflection a+ as the intensity of reflected wave KL and also total

losses In considered system of shocks vaTy. Calculations indicate that the Inten-

sity of reflected wae IM, as a rule,, 1i maln;and therefore a change in direction

of the flow in this wave In negligibly smal1l.This makes valid the assumption about

'4-AI
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the chan&e in direction of flow in wave [F by an angle ; + s.

Depending on the speed of undistubed flow and total angle of deflection 8a +gas,

-also the sign of wave KL changes.

It is characteristic that the speed behind the shook KF is always smaller than

speed behind the shook CK (14 < Is) ; it follow5 from this that the line K0 is line

of tangential discontinuity of the speed. In a viscous fluid along KH there is

developed a vortex motion.

The change of state of gas along a streamline during transition through the

considered system of shocks can be presented in a thermal diagram (Fig. 4-15,b).

At point 2 there is determined the state of gas behind the first shock, and at point

3--after the second shook, since the angles P, and P, are known. There readily

are determined also all the parameters behind the shocks: p3# T3 , ý, and the para-

meters of the stagnation p03 , P03'

Point 3' on the isobar p, gives the state of gas behind the shock &7*. At3/

point 0'3 w find pressure of stagnation behind the shook KF)pP13< P . The looses

of energy in the shook [F are higher than the totast losesn in the shocks BK and CK,

I.e.) aso > A a. Thus, with given limits of changes in pressures, the stagnation

of flow by one shock causes a larger losa of energy than in case of successive

stagnation by two successive shocks.

A limiting case is the stagnation of flow along a smooth concave wall, at

each point of which flow experiences a deflection at a small angle d? (Fig. 4-16).

Here along the wall there will be formed a compression wave consisting of infin-

ite set of oharacterisitios of compression. The motion of a gas through such a

compression wave is accomplished with a constant entropy. However, a smooth ieon-

tropic stagnation here can occur only in layer of gas adjacent to wall. As a

*In constructing the process on a total-heat-entropy (i-a) diagram we assume

pa
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result of the intersection of characteristics of compression at a certain distance

from the wallU, dependJng on speed of incident flow, there appears a curved shook

of variable intenoity.

4

L4

Fig. 4-16. Compression of flow
during flow around a smooth con-

cave Wall.

The flow behind the shook in vortical, since the speeds at different points beyond

line BK are different.

Interaction of compression wave with shock wave qualltatively occurs just as

was indicated in examining the interaction of the two oblique shocks (Pig. 4-15).

At the intersection points of the weak waves and of shook there appear reflected

weak waves (Fig.4-16 ), since the changes in pressure and directions of flow during

transition through a compression wave and shock will be different.

Depending upon speed of incident flow• the rise in pressure in the shook can

be more or less intense than in a compression wave. Consequently, the reflected

•F • -i I i I i i' I/i6 I



waves can be either compression waves or waves of rarefaction.

Different from the considered case is the case of the intersection two oblique

shoc'e shown in Fig. 4-17. The oblique shocks appear as a result of a change in

direction of the two opposite walls of channel at different angles 8, and ,. The

directions of the flow in zones II and III will be nonidentical: in zone III, the

deflection will be larger by an angle a,- 81. The parameters of the flow after

oblique shocks AB and A1B readily may be determined by known parameters before

the shocks I,, p*, T, and the angles a and &,, if these angles are ameller than the

corresponding maximum value 0m for the given vector of the speed I,.

a)O

Fig. 4-17. Diagram of the intersection of two
oblique shoeks,
a--normal intersection; b.--process in shocks in

a theraal diagram.

Parameters of flow in region IV can be founo by proceeding from boundary

conditions for a line of flow passing through the point B. We assume that the

directions of speeds and pressures at all points of regio~n IV will be ider~tica1.

Rence, there is determined the angle betrgen vector of speed in zone IV ard the

vector 1i. Actually, if the resultant.. deflection of flow in zone IV is de signated

•4, then frc.n a consideration of Fig. 4-17 it is readily established that the

S~deflection of flow at the intersection of shoc-k DC1 is equal to 4.8• , •nd at

the int~rsection of no it is 8•.-,,. Being given different valugs ot the
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pressure in sones (p IV ) by formulas (4-13) and (4-17) or by diagrams of obliq,'

shocks, we find the slope angles of shocks BC and BC1 and angle of deflection of

flow &,+-a,. and , The value PlY' at which magnitudes of & determed

by parameters of zones II and III will be identical, can be found after construct-

ing the dependence of 4BC) and &BC on PlY" The intersection point of theae

curves will give the soi'ght value . Knowing the magnitude 86, we find angles

of the oblique shocks P and
B1

A change in the state of the gas along two streamlines crossing mones II and

III in thermal diagram is shown in Fig. 4-17,b. The total increment of entropy

for these lines of flow will be identical only in those oases when If

intensity of the shocks AB and A B is different, then the increment of the entropy

along considered line of flow will be different (point 4 and 4' in Fig. 4-lb).

If at al.1 points .,)f sonow IV the pressares are identical,, the speeds, temperatures

and densities behind the shocks BC and BC will be different. Along the line of

flow passing through the point B t re wi•l be formed tangential discontinuity of

the speeds, as a result of which in viscous gas there appears a vortex.

The stable existence of a system two

intersecting, oblique shocks is not pos-

-_ .• /v sible under all conditions. If angles of

.•L..-.-J-!. .•'. the second shocks POC and POC, are larger

p than corresponding values of jthe char-

acter of the flow changes. Near the neutral

line of flow passing through point B
Fig. 4-18. A Bridge-like Shock.

there will form a curved shock. A system

of intersecting normal oblique shocks transforms into a bridge-like shock (Fig.

4-18). Here losses of energy in the flow increase.

LM1

S0
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44 . .Ste jýise Decsleration of Flow

S tePwiee deceleration of flow can be obtained by applying different systems

of oblique shocks. In the preceding section it was shown that if within given

limits of the changes of static pressure the number of oblique shocks is increased

by means of increasing successive changes in direction of wall, then, the deceleration

of flow will be smoother, and the total relative losses will decrease.

Usually after the last oblique shook there is a normal shock in which there occurs

a transition to a subsonic speed.

Deceleration of flow in different systems of shocks was investigated in do-

tail by G. I. Petrov and Ye. P. Ukhov. By following the basic conclusion of this

work, we shall examine the particular case of stagna-ion of flow in two shocks -

.oblique and normal.

The considered problem in formulated thus: to determine the angle of slope of

first-an oblique-shock, with which the transition frci a given supersonic speed

Sto subsonic occurs with minimum losses (Fig. 4-29). The calculation of such a

system can be realized in sequonce by applying diagram of oblique shocks (See

Appendix). With a given speed of the undisturbed flow A, and a selected value of

angle 8 ,(or P) there readily are determined the speed is and pressure p 2 after

an oblique shock. The corresponding loss of energy C e or change in pressure of the

total stagnation .,r, also is determined by diagram of oblique shocks (or by formulas

in Sec.

Analogously there can be found the speed and static pressure after a normal

shock ( a and p) and coefficient of lose of energy C, (or its).

As example in Fig. 4-19 there is shown the change of speed of flow anM the

lose factors in a system of oblique and normal shocks depending on the angle •,

for 20 - 2. (k - 1.3). The curves indicate that for a given speed 41 thee is a

most advantageous combination of oblique and normal shocks with which the total
" losses will be the minimum.
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Uctually, with an increase in anloe of an oblique shock P1 the loss factor

iC ,ncreases in an obliqus 4hock and the speed after an oblique shock Is. decreases,

It is obvious that at & - 0 and A,-%, - 22* 45' (for A., 2-02 an oblique shook

transfers to the characteristiz. In this case C,--0. The l]i.t•ng value of

the angle &l, with which there still is possibl6 the existence of a plane oblique

shock, amounts to ;,-;-P,, - 65a 40'. At this value of p, the flow after an oblique

shock has a subsonic speed. In the indicated Limits of the changes of the angle

P, (220 451 - 650 40') after an oblique shock there may exist a normal shook. At

P422 45' there exists only a normal shock, and at p - 650 40'-only an oblique

shook.

By varying within these llmits the angle of an oblique shook and by calculating

is and p2 (paramters before a normal shock), there can be found parameters of a

gas after a normal shook. The speed after a normal shook i,=- increases with

an increase in p, from 0,, at P, " 452 to ,2 2,== at p,'"6540'.

AA

.140

0,

Fig. 4-19. Change of speeds and losses in a system of two shocks (oblique
+ normal) depending on angle of oblique shock j, at A, 2.0; k - 1.3.
KEY: (a) opt.



In determining the loss factors in a normal shock it is necessary to relate

the magnitude of the losses to the kinetic energy of the undisturbed flow, i.e.. to

calculate ,

where C e in determined by the diagram of oblique shocks for I.. In Fig. 4-19

there are plotted the values e. It may be seen that decreases with an in-
crease of p,. At p - 220 451 •€== u 0.227, and at • 65 40', *0O0

Coefficient of total losses in the system of two shocks, obviously, will be

equAn to:

The ourye of total losses in the system of two shocks has a minimum at P,45o.

It in obvious that the value P1 is optimum with respect to losses of energy in the

.system of shocks.

Analogous calculations can be made for different speeds 14 by determining the

most advantageous value of P1. Results of such calculations are given in Fig. 4-20,

where total loss factor C is presented depending on p, for different values of 1•

With heavy lines there are drawn C. curves in a range of angles 0, with which

there is possible the existence of a system of oblique and normal shocks, The dotted

line ABCD connects points corresponding to P1_--_a.t* For these points an oblique

shock has an infinitesimally small intensity and, consequently, flow deceleration

is realised only in one normal shock. The points FGHJ correspond to the angle -

SPlx, with which the flow after a plane shock has a sonic speed. For p, > P1. the

C# curves are drawn with thin lines. In this case the calculation can be presented

under the assumption of the existence of a shock after which speed is subscnio.

At p, - 900 it becomes normal. It is readily seen that at and P, 900

the loss factor C, has an identical value.

A comparison of curves in Fig. 4-20 shows that optimum values P1, pt depend on

the speed of the undisturbed flow 1. With an increase of 1, up to certa:ui limits,

the P•,tvalues decrease. For 1: - 1.6 loss factor at the optimum value,



P:opt. 5211 amounts to ., 0.035. In this case, one normal shock gives (point A

in Fig. 4-20) C,2 - 0.113, and one oblique shock with a speed after the shock

equal to the speed of sound (point J in Fig. 420), C#1 - 0.073. Consequently, the

transition from one shook to a system of two shocks (oblique + normal) makes it

00

0~ ~ ~ 10 2 0 4 50 W 0 t

Fig. 420. Curves of loss factors in a system of
two shocks (oblique + normal) as a function of the
angle of oblique shock i, and the speed A; k - 1.3
m: (a) normal shock; (b) rectilinear oblique +
+ normal;(c) curved shock.

possible to decres&e the loss factor more than twofold. At large values of t, a

two-step deceleration is even more effective.

One should note that with an increase in A, the minimum of the curves C, bscoms

more gentle. This circumstance makes it possible to select optimyn values of in

.such a manner that also the static pressure after the second normal shock is the

mximum. The ratio of the static pressure after a system of shocks p3 to the total

pressure before the shock po can be presented in the following form:

Poo PA Pa p.si /67F



here L characterizes the increase of static pressure in an oblique and ,P in a

normal shock.

The change of these magnitudes, and also e41,, and -& - depending on

angle of oblique shock o, for x, - 2.0 is presented in Fig. 4-21. With an increase

of P, the ratio of pressures in an oblique shook ! increases, and in a normal, -p,

PA
decreases. The graph shows that relative static pressure after the system of shocks

for 1, - 2.0 has a maximum at 4, 4Opwhile minimum value of C, was obtained

at 3 450.

0 8
.4

'V 40 Ma 6 87 •0 so

Fig. 4-21. Change of static pressure and stagnation
pressure in a system of two shocks (oblique + normal)
depending on the angle of oblique shock ;, for 1,
2.0; k - 1-3.

In considering that curves r iA the vicinity of the minimum are mildly

sloping, the optimum values of , may be selected by the data of the calculation

for the recovery of static pressure in the system of shocks, i.e., one can select

of 0,optsomewhat smaller than is dictated by the curves ý.

Such a solution is expedient in that case when the basic problem redu,.es to

maximum recovery of the static pressure in the system of shocks, as, for exumple,

takes place for supersonic diffusers.

The stepwise deceleration of the flow in a system of shocks can be graphically

preseented in a thermal diagram. In Fig. 4-22 this process itn shown for two uihocks.
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Fig. 4-22. The process of stagnation
in a s~stem of two shocks (oblique +
normal) in a thermal diagram.

At •,athere ezitsts only one normal shook (point A), At p-•,the "aed

after tho plans oblique shook is sornic and deceleration occurs only in one oblique

shook (point K). Within the limi~ts a•l c •t<0. there can exist a system of two

shocks. Given different values of p, (points Z.L -- 14), it is possible to

construct a line of the limitin states of gas after a system of two shocks with a

different intensity of the oblique and normal shocks ('line AB1..B 4 K). To the &%PAII

angles •,of the oblique shock there corresponds the upper branch of the ou rye of

Aimting states ABlB2B 3. The lower branch corresponds to larger angles of the

.shook 1 "The character of the curve of states AB1.19 4 .B• oearly indicates

.the existence of an optimum combination of two shocks. With a certain value of

I i I I II iI i I I



& e Io P,,ptlOssee of energy in the system of shocks am found to be minimal (point

B3 ). With another, close value of angle • the lessees are somewhat

higher (hO+> Ahx+u),, but the static pressure will attain a maximunm possible

value P3mx (point B2 ). Line of the limiting states can be built by means of suc-

cessive calculations of the system of shocks.

Jc- - - -:, i

S.- -----. 'U,

4~
cc

48 "0

4Fg. 4-23. Change of losses in shocks

in a step-by-step deceleration (Fig.
urea indicateathe number of shocks).

For a perfect gas there can be obtained equation of this line in form of a

relationship between the change in entropy and change of enthalpy in a system of

"@hooks.

At high supersonic speeds for the transition to subsonic speeds it is expodient

to apply more complex systems of shocks, consisting of several oblique shocks amd

one final normal shock. With an increase in the number of oblique shocks the energy

losses will decrease. For each speed of the flow 1, with a given number of oblique

shocks, there exists an optimal scheme of arrangement of shocks which can be found

,by a step-by-step calculation. .1

The graphs given in Fig. 4-23 clearly show the advantage of the aorio complex

systems of shocks at large supersonic speeds. The curves •-((3) make It Poo-

sible to select the most rational scheme of stepwise deceleration for a giren speed.



4-8. The Reflection .of Shocks

a) Reflection from a Rigid Wall

We shall consider the reflection of an oblique shook from a straight rigid

wall, parallel to the direction of speed of an undisturbed flow (Fig. 4-24). A

shook will form at point A, where the change in direction of wall is at an angle •.

;A A

A
Fig. 4-24. Diagram of a normal reflection
of a plane oblique shook from a rigid wall.

During the transition through the primary shook AD, the line of flow in deflected

to the straight wall by the angle 8. It is obvious that at point B this change

in direction is unrealisable and the boundary line of flow maintains the direction

of the wall. This means that at point B the wall forcibly deflects the line of

flow in th* opposite direction by the angle Z o As a result there appears a

reflected oblique shook BC. We note that the angles of the incident and reflected

shocks are not identical, since before the shook BC the dimensionless speed 11< 11

at the samo angle of deflection 8. From the graph A=f(•, 2.) (Fig. 4--5) it is

clear that the angle g,-> ,.

The calculation of reflected shook encounters no difficulties. By knowing

parameters of the undisturbed flow A,, p . and the angle of deflection 8, by

means of the diagram of shocks there are readily determined parameters of the flow

after a primary shook: 1,, p, and Pg. With the same value 6 we find the state of

gas after a reflected shook: is, p, and %, . By the abovwi-discussed method w

find the losses of energy in primary and reflected shocks. One should bear in mind

that such a reflection of an oblique shook is not always possible. If the angle

of deflection & is larger than maximum value for the speed 1,, then picture of

,'.e,:



O, 
I' ;

?a', 4-23. Analysis of reflection of a shook ina diapam of shook polars.a--determination of angles and speeds in an ir-regular reflectionJ b.- X -shaped shook during
reflection.

reflection varies. Let us assume that in diagram of shook polar.s (Fig. 4-25,a) the
Ssector OD depicts the speed of flow up to the shook I,. If the angle of deflection

of wall 8<8,a, , then the hypooissoid corresponding to the speed after the shook
, (sector 02) intersects the line of vector 1 , (points 3 and 4).

At 4--8,, the line OD is tangential to the shook polar 1,(point 3'). The
picture of the flow here remains a. proviously (Fig. 4-24). Vector of speed after
second shook 03' ( aj ) will be les than unity (the speed is subsonic).

If 8>8•,., then a shook polar constructed for the speed 1, does not have
common points with the vector OD and the reflected shook cannot assure an aqualising
of the flow. Part of flow directly adjacent to wall becomes subsonic. !,he re-
flected shock CD is distorted and is displaced against the flow. Here also the
-primary shock AB is deformed. The element CB of this shock becomes normal to the
wall. The system of shocks acquires an i.-shaped form. After the normal ghock0
sector the flow is subsonic. After the curved portion of reflected shook the flow
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may be supersonic. As a result there will foreA a line of tangential discontinuity

C0, on both sides of which the pressures are identical and the temperature and

densities are different, since change of entropy in the transition through BC

and AC--CD will be different. In region 3 after the x.-shaped shock the flow is

vortical.

The reflection of shook shown in Fig. 4-25sb can appear at large angles of

deflection & and small supersonic speeds X1. We shall emphasise that the mechan-

ism of the genesis of the A shaped and bridge-like shockb is identical.

b) Reflection from the Free Edge of Stream

Such a reflection in considered in Fig. 4-26. At all points on the edge FBE

the pressure in identical and equal to the pressure of the environment pa . In the

stream the sa& pressure takes place onl 'before the shook AB. In the transition

through the shook AB, the pressure chages fromp 1 .rp' top.>p.. Consequently, at

point B two pressures are characteristically simultaneous: pa from the direction of

sodium and p2 from direction of stream. Such a point in the focus of the disturb-

ance of a supersonic flows creating a stationary wave of rarefaction. In the flow

around the point, B, the pressure of the flow must drop from P2 to Paiwhich also

results at supersonic speeds in the formation of the wave BCD.

The first characteristic BD comprises with the direction of vector 12 the angle

Sa•-rcs in where is the speed of flow after the shookAB(M,<M,). The

angle of the latter characteristic is gA* v rcsinf. Here, the speed after re-

flected wave of rarefaction M in determined by the ratio ! where _pc,. is the
3PO

pressure of stagnation after an oblique shock.

The reflection of a shook results in the deformation of edge of stream,, wtch

at point B is deflected at an angle AN 8>, . This deflection is caused by an ex-

pansion of the stream. Thus, with a reflection from the free edge of the stream,

along which the pressure is kept constant or drops, the shock wave will transform

I16
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S" ,p
Fi. 4-26. Reflection of oblique

shook from tree edge of stream.

into a wave of rarefaction. If the pressure along the edge increases, thenpdepend-

ing upon Intensity of change of pressure)reflootion can be extinguished or it occurs

with maintenance of sign (as also from a rigid wall).

4-9. Interaction of Shook and Wave of Rarefaction

During flow around bodies of finite dimensions by a supersonic flow of a

perfect gas, the intensity of the shocks at various distances from the body will be

different. Owing to interaction with waves of rarefaction~the intensity of the

shocks decreases with distance and at an infinite distance beooms infinitesim&a3

small.

.Let us consider as an example flow around a pointed plate (Fig. 42-7). On

the forward sharp (4<,,) tip of plate there appers a plane oblique shock AB.

During flow around the point D there wiUl form a stationary wave of rarefaction,

vhere the characteristic at which deflection of flow begins is located at the angle

6.4 =2Arcsin Ma
%here is the spe" after the shock.

Since

then haracteristic win intersect shock wave at a certain point B. The second

* bond&y of the wvv of rarefaction is the characteristic located at an at',le

14SUI



yai

sa m l

Fig. 4-27. Diaram of Interaction
between shook and wave of rarefaction.

a '-arcsin/-

In the sector to the right of point B, the wave of rarefaction interacts with

the oblique shock. In the region As), the speed is constant and eqtmal to 2 the

streamlines are parallel to the generatrix of the wedge AD. We shall draw through

the point B the characteristic of undisturbed flow at an angle s,, =- arcsin , to

the direction of velocity vector el. Since the oblique shock is located at an angle

and the angle of the wave DE closest to D8 is smaller than

s., then in the sector BE the oblique shock is deflectod by a small angle so that

p. P; with a decrease in slope of angle of the shock p,,alfo the angle of de-

flection of flow 8 decreases. Corresponding deflections of the shook and changes

in angle of turn of flow 6, take place also in the sectors E•, F•et cetera.

I •1 i I i"I "I I i i ,



Consequently, the shock in starting from point B is distorted and is deflected

in the direction of flow; the angle of the shock decreases as it approaches a,,

0 In accordance with the basic formulas of a shock it may be concluded that in

the interaction with a wave of rarefaction the intensity of the shock decreases and,

consequently, losses in the shock decrease. The change in entropy, as analysis

shows, becomes equal to zero at infinity.

Analogous results are obtained if the wave of rarefaction is located before

the shock (Fig. 4-27,b). At point D there appears a wave of rarefaction ar.i at

point A1 a shock wave. In interacting with the waye of rarefaction the shock

is distorted. Since after the intersection with the last characteristic of the wave

of rarefaction D1 B the shock A1B1 occurs in a sone of lower speeds, the angle of

it p,•increa~os.

We note that in real (viscous) fluid also the viscosity contributes to the

attenuation of the shocks.

4-10. Cýordtcal Compression Shocks

In the preceding section of this chapter there have been considered compression

shocks in a two-dimensional flow. During flow round axially symmetric bodies, sur-

faces of discontinuity have an axially symetric form. Let us consider peculiarities

of an axially symmetric shock in an example of flow around of circular cone (Fig.

4-28). Before the cone there will form a conical shock, the apex of which coincides

with apex of cone if aperture angle of cone is less than maximum value for given

speed of the incident flow.

r'ig. 4-28. Shape of lines of flow in the
disturbed region after a conical shock during flow around a ccne



The basic relationships during the transition through the surLace of a conical

shock, as is readily seen, will be the same as that for a two-dimensional shock.

[equations (4-13), (4-10), etc.]. With identical apex angles of the wedge and

cone, shock on cone vill have a smaller angle of slope than on wedge, since the

cone causes a smaller constraint of flow than wedge of infinite span of the

same aperture angle. During transition through a conical shock the lines of flow)

just as in case of a two-dimensional shock, undergo discontinuity. However,

since a shock in a cone is weaker than in a wedge, immediatelv after the shook

the lines of flow will be oblique, to the vector of speed of undisturbed flow at an

angle smaller than aperture angle of cone I,. Calculations show that in the dis-

turbed region the lines of flow are not straight, as in a flow around a wedge, but

are curved-, here their curvature is different and depends on the distance from

surface of cone. The curvature of the lines of flow nearest to surface of cone is

very small.

From Fig. 4-28 it follows that with distance from the shock the angle of

slope of the lines of flow to axis of cone increases and the lines of flow asymp Iot-

ioally approach direction given by generatrix of cone. Here it is possible to

see that annular tube of flow formed ty two adjacent lines of flow has a smoothly

narrowing form. The lines of flow are turned convexly to the surface of cone.

Figs 4-29. Diagram of spectra of flow round a cone at

-/

different speeds of undisturbed flow.
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During supersonic speeds such form signifies a decrease In speeds and an increase

of pressures along the lines of flow, ice., deceleration of the flow. It follows

OW from this that after a conical shock the compression of the gas is prolonged.

However, if within the limits of shock an increase in pressures is accompanied by

an increase in entropy, then the compression of gas in disturbed region after shock

occurs isentropically without losses. On this basis it may be concluded that with

an identical ratio of the pressures ! (p 2 is ths pressure on the surface of stream-

lined wedge or cone) the compression of the gas during flow around cone occurs with

smaller losses than during flow around a wedge, since for a cone the total increase

in pressure iq the sum of the isentropic compression and the compression along

shock adiabatic line.

In supersonic part of disturbed region~owing to curvature of the lines of floi

the characteristics are curved.

In Fig. 4-29 there are illustrated three possible cases: (a) the speeds at 32.

*• points of disturbed region are less than the speed of sound, (b) case of mixed flow,

when speed directly after shock is supersonic, and then becomes subsonic, (c) and,

finally, when flow after the shock is complete3y supersonic. The character of flow

after the chock with a constant magnitude To depends on speed of incident flow.

54

4r4

Fig. 4-30. The dependence of speeds on
surface of cone on speed of undisturbed

flow and angle of cone.
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Speeds and pressures on the surface of the cone vary with the change

of speed of undisturbed flow and half-angle of cone y, . 9

In Fig. 4-30 there are presented graphs of change in dimensionless speed on

surface of cone, 1. depending upon angle Yo and ". One should note that during a

given mode of flow around at all points of conical surface the speeds and pressures

have constant values. For a cone, the same as for a wedge, the theoretical solution

of the problem gives during one and the sawe mode two possible values of slope of

angle of shock and of parameters on surface of cone (lower branches of curves in

Fig. 4-30). However, practically, as a rule, there are realized smaller values of

the shook angles (upper branches of curves in Fig. 4-30). Therefore, there can be

made the coniclusion that with an increase in yo the speeds on surface of cone de-

crease and the pressures increase. The increase in speed of undisturbed flow leads

to opposite results.

Such a character of variation of para-

metere of flow on surface of a cone takes

; -- place as long as angle of the cone does not

attain a limiting value, with which there

occurs a withdrawal and deformation of

. 1,24 4( CI 48 U24 e. shockl the same as in the case of a wedge.

Fig. 4-31. Dependence of maximum A conical shock will transform. into an
"angles of wedge and cone on veloc-
ity of undisturbed flow (k - 1.-4) axially symmetric surface of discontinuity
KSY: (a) Cone; (b) Wedge.

with a curvilinear generatrix. However,

the maximum half-angle of the cone 4,,, with which for a given ;., there occurs a

transformation of a conical shock into an axially symmetric with a curvilinear

generatrix, will be larger than the corresponding values for a wedge. In Fig. 4-31

there are presented dependence of maximum angles of deflection 8 and %,, on the

number 1, for a wedge and a cone.

For a conical shock it is possible to construct in plane of hodograph u, v and
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Fig. 4-32. Shook polar for conical shock in plane of hodograph
and in thermal diagram for k - 1.4 (apple-shaped curves).
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in the thermal diagram a shook polar (Fig. k,-32).

In the plane of the hodograph the change of speed directly in a conical shock

is expressed by line DEA, where the vector of speed after shock is determined by

the sector OE (speed of undisturbed flow OD). The angle of shock 1 can be found by

drawing a normal at the point R to the sector DE. The change in speed in disturbed

region after the shock is described by the curve ER . This line corresponds to the

isentropic change of speed (compression) after the shock.

The apple-shaped curve DE A defines the hodograph of speed on surface of cone;

it is possible to call it a shock polar of the cone. Slope of the sector OER deter-

mines halfangle of cone Y, . The region included between the curves DEA and DE A

characterises the flow in the disturbed region. At any point N the sector ON deter-

mines the magnitude and direction of the speed. The normal drawn to the hodograph

of speed at point N gives the halfangle of conical surface passing through this

point in plane of flow.

Each intermediate curve DNA1 corresponds to a constant value in of difference

of angles I -Y . Since in the disturbed region the pressure of total stagnation

does not change, then the constant value E!. corresponds to the hodograph of speed
psi

BE" By plotting these values for different points E, it is possible with the use

of the shock polar to determine the change in pressure of stagnation. In the plano

of the hodograph it is possible to draw an arc of a circle with a radius as, which

will differeniate the group of modes of flow around a cone with subsonic speeds after

shook. Here there are readily established points of the disturbed flow in which

the speed of flow is equal to the critical. For a given shock angle I these points

are obtained by the intersection of arc a% and the hodograph of speed E'E' (point R).

In a thermal diagram, the shock polar is constructed by an already known method

(Fig. 4-32,b). Line DEIA corresponds to a change of state of gas after a conical

shock with a change in P. from P, .-. (point D) to P,- (normal shock). At

a definite value y. and correspondingly P. the state of the flow inmediately after
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shock in characterized by the point E determining change of entropy (loss Ah)

and change of potential energy of gas in the shock (.ii),, The sector E E corre-

sponds to the isentropic compression after the shock, and at point E there can be

found parameters of the gas on the surface of cone. Corresponding change in the

potential energy is equal to H.•. At identical angles of a two-dimensional and a

conical shock ( p p. ) variations of parameters happen to be close, since the

Isentropic compression in the disturbed region is significantly less intense than

shock compression in a shock.

In a system of conical shocks it is possible to realize stepwise deceleration

of a supersonic flow, the same as in a system of plane shocks.

In conclusion it is necessary to make the folIowing remarks.

Up to the present we have assumed that any shock is a geometric line (or surface)

9 m

L FF

Fig. 4-33. Thickness of shock

depending on its intensity.

This means that the transition from parmeters of an undisturbed flow to parameters

after a shock is realized in an infinitely thin layer. The existence of two adjacent

regions of flow with different temperatures and speeds in a real-viscous--gas JiS

possible only in a certain transitional layer of finite thickness, within thli limits

of which there also occurs a very intense, but continuously poadual change o.! the

*�parameters.
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By including methods of the kinetic theory of gases and the fundamental equation

of gas dynamics with a consideration of the thermal conductivity viscosity, it is

possible to obtain an approximate evaluation of thickness of a normal shock.

Calculations show that the thickness of a shock has the order of twice the

length of free path of molecule and therefore decreases with an increase in its

intensity. A corresponding graph of the change of thickness of shock depending on

e• with the pressures not too low is presented in Fig. 4-33. We see that thep,

thickness of the shock under ordinary conditions is very small. Experiments confirm

that the above-adopted simplified diagram of an infinitely thin shock and the derived

formulas in this assumption under ordinary conditions very accurately reflect the

actual picture. One should bear in mind that in rarefied gases with great lengths

of free path the thickness of transitional region may be found to appear very sub-

stantial; obviously, in this case the obtained relationships for a shock may give

appreciable errors.

4-11. Condensation Shocks (Thermal Shocks)

Shocks may generate not only in adiabatic flows, but also in those cases, when

in a small length of the flow there occurs an intenso admission or withdrawal of

energy (for example, heat). Here there will form shocks, called thermal. Of maximum

interest are two types of thermal shocks: propagation of detonation and combustion

and condensation shocks, associated with the motion of two-phaug fluid and, in part-

icular, of moist vapor or air.

The first type of thermal shocks has been studied in detall and discussed in

special literature. The second type--condensation shocks9 which are widely encountered

in aerodynamic experiments, in Laval, nozzles in the flow parts of turbomachinrs-

have been studied in less detail.

An analysis of properties of condensation shocks is based on certain assumptions:

a) condensation occurs instrntaneously, so that there wtll be formed sharp boundary,

Si I I l I i i i ,



separating gas with noncondensed water vapors from gas containing the con-

densate; b) effect of condensation reduces to release of the latent heat of vapor-

isation; a) this process is accompanied by change of physical properties of the

gas component and by a decrease of its weight portion in the mixture; a change of

physical properties of the gas and its parameters occurs only within the limits of

the shock; d) influence of viscosity, thermal oornductivity and diffusion can be

ignored; a) the gas phase is satisfied by the equation of state E=gRT, and k

varies only during the transition through a shock; f) after a shock the liquid

phase has the same speed as the gaseous.

The fundamental equations of a condensation.shock* are general equations, de-

rived in Sec. 4-2.

Taking into account the designations adopted in Fig. 4-34, equation of

continuity is written in the following form:

P,-(I + ?a V + I) C.) sin +- ,) 1,K VSCO (4-37)

where |t is the angle of oblique condensation shock;

PM- •4 is the ratio of mass of liquid tj mass of gas after shock;

P; ps, ra, ra

Fig. 4-34. Diagram for deriving equation
of an oblique condensation shock.

*Sao list of references. A theoretical investigation of condensation siocks for
the first time was made by S. Z. Belen'kiy. In the work by R. Oerman there is given
the solution for a normal condensation shock In the work by V. A. Andreyev and
S. Z. Belen'kiythere is considered the more general case of an oblique shock. F. Ross
solved the problem• of an oblique condensation shock by taking into account tViE ~ changes in the physical properties of the gas.
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K is the degree of humidity after shock;-.

tP is the density of the liquid; CX2 -, sin 1Pi- VS COS Fe"

Equation of mmuentum in projections onto the normal to shock and onto the

*shock plane will be PIP -- #, "=h1 -to (I+ )(us in PV- us COS F").;
he'le, - t,( V-+-/) C.2el .X. (4-.38)

"-t oI +I") (Un SIN PV8- C01 9i) (Ur C0S " V0 sIn FJ)=0.

where C,- Cos PS, - u s, Cos 11, + v, si11 (4-39)

Equation of energy will be written as follows:

+.. , . +,Is- A.•m (4-40)

where ai o.-- g. is the change of enthalpy of stagnation due to liberation of

heat during condensation.

Since the enthalpy of stagnation at the intersection of shock varies, then the

critical speed up to and after shock will be nonidentical:

Here k,, k2 are coefficients of the isentropic process up to and after the

condensation shook.

The relationship between critical speeds is expressed by formula

where tRe A ;

The left-hand side of the equation of energy (4-40) can be presented

in the following form

4_ kt *+1 I (4-40a)

and the right-hand side

M! +_ k.lk

Considering that

T., -- and , .' (4-42)

*i is the enthalpy of gas phase without a calculation o. the heat of condensatIoMn
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where #,e is the angle of deflection of line of flow at the Intersection of conden-
nation shock, by means of expressions (4-37), (4-38)o (4-40), (4-41) and (4-42) we

Sobtain an equation of the shock polar for a condensation shock in the form;

- mA"'5o-t (*- j-, ,( ••

(4-43)
+1 +I0 ,-BlWI + m

Here the following designations have been adopted:

Equation (4-43) at j.-t-0 transforms into formula (4-26) for an adiabatic
O 'shook.

By means of (4-43) on bapis of formulas (4-42) there are determined the angle
of oblique condensation shook "p, and the angle of deflection of flow e..

From the equation of energy (4-40b) there may be obtained a formula for deter-

mining the number M2 after shook:

Aig 
+

(4-44)

The ratio of the pressures in the shock we find by the formula
&, n+ (,-' (I +•r k•,41 snP.• ••) (4-45)

I+ - - (u sin p.iCos; M)'
Analogously to procedure in deriving formula (4-35), we obtain a foroula for

the ratio of the stagnation pressures in a oondensation shook:



M22 I- i
P +(k--I-- (4-46)

pot P% h)AitN E,.

The ratio of the densities in the shook

-kmeI~V 0 (4-47)

The obtained system of six equations (4-42) - (4-47) makes it possible to find

parameters after the shook v2, u2s %j, post p2 and tan Pk with the given parameters

before shook cl, pIP Pi, a*l and of the knowns Ti, /, C

By means of general relationships individual particular cases are readily

exained./

In many practically impo iant cases it is possible to consider that physical

properties of gas are kept oonotant (k1 - k2 ; - - 0) and that the mass of condensed

phase after shook is negligible in comparison with the gaseous (j - 0). In this

case equation (4-43) will be simplified and acquires the form:

S-4 (--48)

The comon solution of the original equations after corresponding simplifications

makes it possible to obtain a connection between normal components of speed in a

condensation shook in the following form:

+ (4-49)

where

" ga- •a s. " a t. S.COS

i17* V
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and

"i- cote- (4-50)

The quantity % is determined by formula (4-41). For the ratio of the pressures
in shook w find:

S , o

This equation changes to formula (4-23) at b-" 1 (adiabatic shock) after sub-

stituting !-t from equations (4-5) and (4-11).

From eqtuation ("-48) it follows, that vertical component of the speed after

the shook vanishes at thrwes values of the vector u,,, The first corresponds to the

degeneration of the shook into a weak wve '-••k . The second and third

values are obtained from the coridition _ _

OW + jut +

The two roots of this equation will be:

i.e.) (A4.'.± *I .) I (g

The obtained relationship expresses a connection betwen speeds for a riormal

co~odns•tion shock. Here it is readily verified, by having set into equaticn (4-49)

conditions of a normal shook: i5 =ja.i& . From equation (4-51) it follows that

the speed after a normal shock depends on x, and ATI -the heat liberated dvring

* condensation, which in turn is determined by quantity of the condensing gas.

/7?



From equations (4-49) and (4-50) it follows that the quantitieab and a.

cannot be less than a certain limiting value for a given F or &, since otherwise

c and x, will be imaginary quantities. From (4.-51) for a normal shock

aeii•'n -z -

In accordance with formula (4-41) at k1  k 2 , the maximum change of enthalpy

of stagnation in the shook corresponds to the mimium value of &
-(*,5)

In a general case for an oblique shock, from equation (4-49) we shall obtain:

correspondingly from (4-50) we shall have:
. ~ ~2(k, 4; 1) . . .

;6 " MIA? WIN b + I +(2 sin',,4. 1 4 1' +4(,- 1) , 42 , (4-53)

V, sin ' PS

And.M1

As it was pointed out, the relative change of enthalpy of stagnation in a

condensation shock R- oharacterizes the quantity of condensing liquid. The

obtained relationships show that condensation shocks can appear only with defin-

its quantities of condensing liquid. The limit of oondensation in a shock depends

on speed before the shook and on the angle of shock.

In returning to an analysis of the equation of shock polar (4-48), let us note

that 72 •o at

"-" 4. or "-i'. .+ - +

The dependence (4-48) graphically is presented in Fig. 4.-35 for different

values of ;,. For % plane oblique condensation shock with a given "a4"•j

Ito
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Fig. 4-35. Shook polars of condensation shocks fordifferent values of rt. (different relative humid-ity); '$,- 1.5; k - 1.4.

in the shock polar we find two points: E21 and E22 corresponding to two different
angles Of the shock. Here point E21 corresponds to a curved condensation shock. The

points E3 correspond to an expansion shock.

The value A a .1 corresponds to a shook polar of an adiabatic shock. As X4
decreases (as Zi, incres-aes) the angle condensation shock at a given a. increases.
In accordance with formula (4-51), two values of the vector % (points and D2 )
Correspond to a normal condensation shock. The negative sign before the root in
(4-51) gives the point D1, and the positive - D2 .

Thus, equations (4-43) and (4-48) and the shock polar in Fig. 4-35 show that
there is theoretically possible the existence of four types of normal and oblique
condensation shocks, corresponding to different speeds before the shock and to the

quantities da.i).

The corresponding classification is shown in Table 4-2.
However, if we consider certain subsidiary conditions, then there are found

possible at most two types: 1) supersonic shocks, in which Cnl> al, cn2<a. and
the condensation is accompanied by the compression of gas (p2 .> Pl); 2) sutconic
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TABLE 4-2

Possible Types of Condensation Shocks

IiopVm.1L11N COCT8S1 ' OtIle"e KpirIme.I i~10h02 .111 COCTfR rtn(J

c9O: CIS OpOCre• oi, ),a CKOO)OCN ¢CKi IX

F,32 > as ¢atIoo/

2. Cal <1: 43 RH

3. c, 2 >4a1  ~ ao
4. t,2<Ua RHO

KEy: (a) Noriml component of speed before shock;,I
(b) I-atio of critical speeds; (c) Normal component
of speed after shock; (d) type oZ• shock; (e) expan-
sion shock; (M) shock wave*

shocks, e "Pesponding. to conditions ca< Ail r2 < a 2 and in which the conden-

sation is accompanied by rarefaction of San (p2 < p,). Shocks corresponding to

the relationships Cnl > a1 and c2> a2  cannot be actuaLly realised, since such a

shock would be displaced relative to the gas which is aheai of it with a supersonic

speed and its genesis could not be reflected in the state of this gase

Condensation shocks in a subsonic flow cannot transfer Sas into a region of

supersonic speeds (cnl < a; On2 < a2 ), since in this case it is necessary to di-

vert from the gas beat, which does not correspond conditions of condensation.

We shall determine the change of entropy in condensation shocks.

In particular case c O, we shall obtain:

A-s,. [ +I)O (4-54)

Formula (4-54) contains the ratio All which can be found by equation (4-46)

by substituting k_ - O;ohere M and E, are determined by formulas (4-44) and

('-45).

Studying equation (4-54), it is possible to be assured that for shocks of

the first three types (Table 4-2) as>o. However, by drawing upon the subsidiary

I I • I • I i l • l I I/I .l



condition (thermodynamic state before shock must correspond to the beginning of a

rapid condensation) and considering the effect of the heat exchange, it is possible

to show that the shook of first type, as well as fourth, is impossible.

P/P ,,AoP ,/A /
WiZvI -200 !

4 1 50-1,0

444- ;25 , /
IleJ

W 0 0 . 1.3

025

0a 4 _ 1# /Z __

Fig. 4-36. Dependence of the relative
pressure and M number on absolute hu-
midity x in Laal nozzles.

Uperience confirms the possibility of the formation of shocks of second and

third types.

The air humidity and speed of flow exert a decisive influence on the position

of shook, its shape, and intensity. In Fig. 4-36 there are presented curves of

relative pressure and X, number before condensation shock of depending upon absolute

humidity of air x by experiments of A. A. Stepchkov, made in Laval nozzles. With

an increase in humidity the condensation shock is transferred into region of lower

M1 numbers.
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Fig. 4-3?.

a - change in position of condensation shocks
in Laval nozzle depending upon the speed ),
and relative humidity x j b - diagram of

shock in nossle.

With an increase of humidity the supersaturation of flow of air by water vapor,

determined by the ratio of the partial vapor pressures to pressure of Oatura-

tion Lr"-. and also the sipercooling AT -T*a-T, (Fig. 4-36), where TH, is

the temperature of saturation, and T1 - temperature before shockldecrease. As

the humidity increaes the rAgnitude. of the supersaturation and supercooling de-

crease.

The displacement of the condensation shock depending upon humidity is explaine4

apparently, by the fact that with a decrease in the amount of water vapor, its

condensation occurs at a lower temperature, corresponding to a high M. number.

In the displacement also the shape of the shock changes: with a high humidity

the shock becomes bridge-like and approaches a normal shock; with a decrease in

the humidity there is observed, as a rule, a system of two Intersection shocks.
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In conclusion lot us note that the discussed theory of condensation shocks

ignores questions on the mechanism of condensation--the genesis and development of

nuolei of condensation.

~IL
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CHAPTER 5

SMDTION OF GAS DURING PRESENCE OF FRICTION

5-1. Temperature of Stagnation in Viscous Fluid

In analysing the motion of a real (viscous) fluid it is necessary to consider

dissipation of energy, caused by internal friction and thermal conduction, i.e.q

thermodynamic irreversibility of process.

The motion of viscous fluid is described by the system of equations of con-

servation: flow, momentum and energy. Equation of continuity (1-12), as has al-

ready been indicated, is valid also for viscous fluid. Equation of momentum in

form of Euler (1-16) should be augmented by terms, which take into consideration

the influence of viscosity.

It should be emphasised that for irreversible processes of motion,, integrals

of equation of motk9n and energy do not conform. In deriving the equation of

energy for a flow (See. 2-1) it was indicated that it was valid also for adiabatic

(irreversible) flows. However, this remark is fully valid only in particular case,

when the work ol forces of friction completely will be converted into heat. Such

a process correaeponds to simplest scheme of a one-dimensional flow or motion of gas

with a uniform field of speeds.

In analysing the motion of a viscous fluid with a nonuniform distribution of

speeds in the flow, the condition of equivalence of frictional heat and work of

friction is not fulfilled. In such a flow only part of work of friction is

183



transformed into heat, but the other part causes a purely mechanical effect:

rebuilding of the field of speeds, in process of which there occurs a redistribution

of kinetic energy between particles of the fluid. It follows from this that

different particles obtain a varying quantity of frictional heat and have a varying

reserve of total energy. Consequently, the condition io - const, in the general

case is not an integral of equation of energy for entire mass of fluid, since in

the flow there will be formed a local redistribution of the energy.

As example, let us consider motion of a viscous compressible fluid between

two flat walls (Fig. 5-1). The upper wall is moved in direction of the x-axis with

1+•7-O

feet, r,, r. 40gl ' 4

SFig. 5-1. For deriving equation of energy for flow
Of compressible viscous fluid between two flat walls

- (flow without gradient)

i a constant speed, equal to speed of gas o•. On the lower wall speed is equal to

mero, since this wall is motionless.* l ' assume that the pressure is kept constant

along the x- and y- axes, i.e.3  --- -0

If the speed of motion of upper wall is small, for a adiabatic flow it is

possible to assume that temperature is constant. and identical for all points of the

flow. If, however, magnitude a o is fairly high, then it is necessary to consider

that temperature T is a function of y. In such a flow the effect of compressibility

*The coneidered particular case of motion of gas is call Couette flow.

7VA?
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is developed only in connection with a change in temperature of gas; density of

gas varies in accordance with the formula (for an ideal gas)

w P Const

Since in considered problem the speeds along the x-axis do not change, and

the pressure is kept constant both along the y- and x-axes then the law of conser-

vation of energy is formulated very simply: quantity of heat, admitted to the *Is-

ment, plus the work of forces of frictions is equal to sere.

We shall designate: Q as quantity of heat, transmitted to element in unit of

time from neighboring particles; % is the stress of friction. The quantity of

heat, received by the element, is determined as a difference (Fig. 5-1):

Qd - (Q+ du W ',

The difference between the works due to frictional forces per second we find

by equation [(,g+ -dy) (c±-!gdy)- icc] dx =~-!(-c)dydx.

Then equation of energy will be:d

or

- Q'+ W = Const.

The constant on the right-hand side of equation of energy is determined from

boundary• conditions. Thus, at y 0, o - 0 and Q - Q0. where Qis the specific

quantity of heat, transmitted to flow of gas from an external source.

Consequently,

-Q+'c=-Q,.

For a laminar flow % is determined by formula (1-4)

V remember that

*The dimension of an element in the dix ction of s-axis is adopted for the
unit.
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where I is the coefficient of thermal conductivity.

After simple transformation* we obtain:

*d +PC dc dC,, +c

The magnitude

ise oalleu the Prandtl number. Let us note that the thermal conductivity and vis-

cosity coefficients appearing in the expression for Pr depend on the temperatures

~~ = I•; (T')&A p• = p (T).

The integral of equation of energy for the cue v- const makes it possible

,to associate the static enthalpy in the flow with enthalpy along a fixed wall in

followinig manner:11,+P S fQ. yto•.o .... , ,_;+Pr=_-PQ. ..

where in a linear distribution of the speed

vo in the stress of friction on wall, 1 cT' is the enthalpy of stagnation on

wall.

e ~Consequent lys

r, %1(-1)

For the upper wall, moving together with flow with a speed a .. , , there in

readily obtained:

__4 . - - r o 5

By means of (5-1) and (5-1s) after simple transformations we find:

oz' I r
OW~~1 4-- Pr ~ )Af~t+

A- P~ (k -- 1) 1 (5-ic)

We find for the case of an adiabatic flow (Qo M 0) a relation between temp-

eratures of stagnation on moving wall and in an arbitrary section of flow (at a

* distance y), by taking into consideration that the temperature of stagnation and

1,89



theroodynimic temperature are associated by the relationship

By bearing in mind that there is considered the case op - const, consequently

i - a T, and for an adiabatic flow ard Q0 - 0, from (5-1) and (5-id) we obtain:
P 0

;W+

For a moving wall by means of equations (5-1a) and (5-1d) we will have:

-.•* +(I- P4)•,.

Consequently, r;A a--el
(I - r -*1 .- I- I- Pr)( --E)(,- )

( - Pr'52
where

Formula (5-2) indicates that for Pr 4" I in a viscous gas temperature of stagnationb

i.e*,totaener s in not kept constant through the section. At Pr - 1 the temp-

erature of stagnation ' F---T, - cohst. for all points of flow.

The Pr number characterixes the relationship between heat, liberated due to

friction, and heat, eliminated from element by thermal conductivity. At Pr <1,

which takes place for all gases the heat dissipation is accomplished more intensive-

ly than its liberation. Xn this case Tr <. At Pr > I the liberation of friction-

al heat occurs more intensively than its elimination, and > ý T*,r.

For a perfect gas the Pr number is a physical constant, independent of the

state of gas.

For the more general case of a two-dimensional flow of gas, when the speeds

depend on x and y differential equations of energy can be presented in such a form*:

k--I

(o~r ( +Pr'y-%v) or (i +P k- Alf )

*The derivation of differential equations of energy and momentum can be found
in the book b7 L. G. Loytsyanskiy et al. (See list of references).
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The equations of momentum with the additon of terms, considering influence of

viscocity (eqvation of Navier-Stokes), are written in the following form:

As cOu A I . 4p ( % +t

W r Olt (5-4)

A,11 +-3 A'-(411 A.

w+ +j:YT '+"_

0'I" I a mD

These equations are supplemented by the equation of continuity (1-12) for a

two-dimensional flow: OP +_a (P() 5-4*)0

equation of state (1-1) and equation of friction, for example, for a laminar flow

by Newton's law (1-4).

During investigation of motion of gas in pipes and channels by taking into

* account the viscosity, and also in studying the flow around bodies by a gas flow,

the problem reduces to determination of the losses of energy and aerodynamic forces,

acting on a streamlined surface. For this purpose it is necessary to solve together

the closed system of six equations (5-3), (5-4), (5-4a), (1-1), (1-4), by determining

the unknown functions of the coordinates: p, p., uY, T and : (for a steady flow).

5-2. Conditions of G-as-Dynamic Similarity

In connection with very great difficulties of solving the system of equations

of motion in the general case (such solutions aue obtained successfully only for

simploest particular cases) in practice the drag coefficients and loss factors of

energy frequuntly are determined experimentally by means of testing models under

laboratory conditons. At same time it is necessary to observe such conditions in

testing models, which assure the reliability of obtained results and allow Q9 to

* extend these results to natural objects.

'"• [ 11, 1111 III I " I III.



cie,

Fig. 5-2. Schematic Diagram of Similar flows.

The widely applied method of similarity in mechanics allows us to formulate

the indicated conditions of model tests and it establishes a procedure of trans-

ferr:ig results of laboratory investigations to objects in nature.

The aerodynamic forces, acting on a streamlined body or on wall of a channel

(including also forces of resistances) are expressed in terms of dimensionless

coefficients. We shall establish, on what kind of parameters, in general case the

drag coefficients depend.

For this purpose let us consider the flow around two geometrically similar 0

bodies by a fluid (Fig. 5-2). /
Zn the case of the kinematic and dynamic similarity of two considered phenomena,

the fields of spdeed and forces -in the two flows should be reciprocall~y proportional.

Then, by introducing scales of the lengths L, time Tg and mass M, it is possible to

present an association between the lengths times and masses of two similar flows

in following manner: .1 - U; _t'- T1; 5' = -.

The scales of all other magnitudes, appearing in equations (5-4), readily are

expressed by means of the indicated scales.

SLt us assume that equations (5-4) express a connection between flow parameters

of the first flow. By bearing in mind dimensionality of magnitudes, appearing in

these equations, reflected in units of measurement: length of x, y (m], speeid u,

v C(/sec], density p [kg - sec2 /m4 ], kinematic viscosity v [m2 /sec), mass m[kg

%.eao2/m, and pressure pfkg/m2], it is easy to associate parameters of first and
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second flows by means of scalar coefficients.

le T

Here, and above the prime designates flow parameters of the second flow. Re-

lationships between parameters (5-5) are an evident result of the proportionality of

the linear dimensions, times and masses of the two similar flows.

BY arranging axis of the coordinates in both flows identically, by moans of

substitution of relationships (5-5) into the first equation (5-4) it is possible

to write for the second flow:

O +I l-÷9'-a- • d "•-L adx

k ' Ou* 0eu * (5-.6)

Uqution (5-6) expresses equation of maonntwu in a differential form for the

second flow, written out in terms of parameters of the first flow.

All terms of equations (5-4) and (5-6) have, naturally an identical dimension-

ality, L [q/sec2 ], of which one is readily convinced by means of relationships

(5-5). In order that the flows are dynamically similar, it is necessary that they

satisfy one and the same differential equations of motion. It follows frM this

that complex factors in front of terms of equation (5-6) are identical, ie.$

A hC k kk,&" e" T-- Aln -• -=-WI,

or
L ML kP k;i•

By replacing here the scalar coefficients from (5-5), fi~nalJy we obtain by

taking into account the equation of energy (5-3) the following conditions of

O similarity:
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Thus, the two flows are dynamically similar, if there are fulfilled relation-

ships (5-7) between parameters of these flows. Relationships (5-7) are called

criteria of similarity (dimensionless numbers). The first relationship (5-7) es-

tablishes an equality of the Reynolds numbers in the two flow:

Re = Re.

The Reynoldst number expresses the relationship between forces of viscosity

and forces of inertia in the flow.

The second condition is unique, where there appear similar time intervals t

and t',, and it is obtained as a result of the similarity of terms,# containing the

local accelerations and 0 ) in. the equations of motion. The local accel-

erations characterize onl transient, including also periodic, processes of motion

of a gas. Consequently, second equality is condition of similarity for transient

flows.

The relation
Sti'

is called the Strouhal number; for a periodic motion.

Sh

where n is the frequency of periodicall non-stationary process.

The third equation gives an equality of a dimensionless number which takes into

consideration the influence of body forces in the flow. If the acceleration in

field of Earth's attraction can be assumed to be constant (• - 5'), then, this

oriterium, called the Froude number, is readily presented in such a form:

Fr I-= Fer'.

1984.1,



In gas flows the influence of body forces, as a rule, is small and therefore

the •r number during the simulating of gas flows in not taken into account.

Fourth equation (5-j) expresses connection between static pressures and velocity

heads at similar points of similar flows. The magnitude

can be considered as a characteristic, which takes into consideration the influence

of compressibility. Here it is easy to check, by replacing p in terms of speed

of sound.

Then, for the two flown we obtain:

or
kWO - MA' .

Consequently, i4entity of the numbers has as its own consequence an equality

of kW numbers at similar points of flows. It follows from this that the H number,

known by us from the preceding, emerges, as the dimensionless numbers, which reflect

the property of compressibility. To the same degree also index of isentropy k in

a perfect gas should be considered as a dimensionless number.

In considering differential equation of energy (5-3) for compressible viscous

fluid, can be obtained additional, already familiar from the preceding)Prandtl

dimensionless number:

From this equation there ensues also identity of criteria k and X for the gas

flown.

In a turbulent flow there is introduced the important characteristic-the

decree of turbulence:

0I
1 m
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SA#(C-C d is the mean square rate of the pulsation; c is instant-

sous value of speed; ca is average speed of turbulent flow:
A

In summariz.ngo let us note that necessary conditions of similarity of two

flows reduce to an equality of the determining criteria at similar points in nature

and models and of the identity of initial and boundary conditions.

An analysis of equations of motion and the dimensionality of magnitudes, deter-

mining the resistance of streamlined body or loss of energy in flow of gas, showed

that the corresponding dimensionless characteristics of the drag are functions of

the fundamental dimensionless numbers:

ex = e, (Re, M, Pr, Sh. E);
C=MC-(Re, M, Pr, Sh, E), (6-7A)

where a.7 is the drag coefficient (see Seo. 5-13);

C - is the lose factor of energy (See Sec. 4-5; 5-14; 8-5 et al.)

In an investigation of different phenomena not all the criteria have an ident-

ical phyrical value. Depending upon the specific problem one or several criteria

mya have predominant value, while another group of criteria does not exert a marked

effect on characteristics of the motion.

Thus, for example, for a steady-motion of incompressible fluid, the H and Sh

numbers lose their meaning and the dependence (5-7a) is simplified.

With a consideration of the compressibility in a steady motion for gases with

identical physical properties orex(Re, H).

The equality of all dimensionless numbers can be assured only in an experiment

involving natural phenomena; this, however is associated with major difficulties.

* In the relationship (5-7a) criterion k does not appear, since according to
molecular-kinetic theory of gases, the condition Pr - Pr' is equiva,2Ant to
condition k - k'.
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Usually there is made an approximate similarity (partial modeling) on the basis of

one or two of the most important criteria. Results of experiment are simply cor-

rected also for other criteria, if there are known the values of these criteria in

the experiment and dependence of studied characteristics on these criteria.

In an investigation of flows, in which there are two or three determining

criteria (for example, Re., and X or Re, M and Sh), it is necessary to put principles

of individual modeling into practice, i.e., to assure possibility of independent

change of each of the criteria in a specific range of its values.

In conclusion, let us note that the above-considered method of dimensional

analysis may prove to be very effective, if there are known the physical parameters,

determining investigated process, but it does not succeed in solving or even in

writing out a system of differential equation of the problem.

In these cases the method of dimensionality in combination with experimental

data makes it possible to obtain a solution for a whole class of mechanically

similar phenomena.

5-3. O e-dimensional FlIv of a•a in the Presence of Friction.
%stic guations.

Basic equations of a steady adiabatic motion of a viscous gas are the well-

known equations of continuity, momentum,and energy.

The equation of momentum of a one-dimensional steady flow without an exchange

of energy from the environment in the presence friction can be written in such a

form:

c (5cO)

where dXtp is the unit impulse of the frictional force.

The magnitude dXtr can be expressed by the hydraulic formula:

dX ,2- C .dx (5-9)

where r is the drag coefficient; D is the inner diameter of pipe.
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. i~ solving commonly the equations (54), (5-9), (2-14) and (2-6) there can

be obtained a differential equation of distribution of speeds along a tube of vari-

able cross-section by taking into consideration the influence of viscosity. It is

obvious that this equation is analogous to (2-29), but it should contain still

another term which takes into consideration the influence of viscosity. Simple

computations result in such an expression:

-- T--(5-10)
0-4 I-*IId _Ckadj

where .

A formula, determining change of pressure of flow along a tube of variable

cross-section, by following the already known mothod, discussed in Chapter 2, can

be obtained in the following form:

-~~~~ -4FF-7sn
From equations (5-10) and (5-11) it may be concluded, that the variation of

parameters of flow in a tube of variable cross-section takes place under the in-

fluenoe of two fadters: deformation of flow (cahnge in tube section) and forces of

friction. Equations show that influence of friction always is unilateral. Thus,

for example, at subsonic speeds ( 1< 1 ) in a narrowing tube (dF>O) friction pro-

motes the acceleration of flow ( d)>O and do< 0). At supersonic speeds in the

sano tube (OF< 0) friction results in a more gradual drop in the speed and corre-

spondingly to more gradual increase in pressure in comparison with an ideal process

without losses.

From equations (5-10) and (5-31) it follows that in simplest case of tube of

Anonvarying cross-section (dl - 0) at 1<1,, we have -r Oand ýP<0 and,

consequently, flow is accelerated. It is simple .to see that in this case at a

supersonic speed (I> 1) A<0: the flow is decelerated.

:Fn comparing the influence of a change of section of tube (deformations of tube

of flow [stream tubeD) and influence of friction, it may be concluded, that'in

' i,., " rt ' ,



subsonic and supersonic flows, friction qualitatively results in the same change

in speed of flow, as a decrease in the section of tube.

Consequently, influence of forces of friction in a flow can be replaced by an

equivalent deformation of the stroam-i.e. 3 by a decrease of its section in the

direction of the motion.

The aompetence of such a replacement results from the following considerations.

The motion of a gas in a tube without an energy exchange, but in the presence of

forces of friction is an irreversible adiabatic process, Such a process,, as we

have already known, is accompanied by an increase in entropy. The increase in

entropy can be expressed by equation (4-27).

For a system without an exchange of energy (by bearing in mind, that To 1 -

wT and that the equation of state gives' we obtain:
1 02 Pas psi

as In A-Iin -. (l)
Since the entropy increases in direction of flow, the pressure of stagnation

S should decrease. I
0 On basis of equation of continuity 12-41) for two sections of the tube, let

us note that in both cases at identical agnitudes F!, IX and A2, the section FP!a

subject to frictional forces must be larger than for an isentropic flow.

The magnitude %,F can be considered as active section of the stream. For a

tube of constant section (F - const) it is obvious that an active section a.F in

presence of friction decreases, since the magnitude a. decreases.

Equation (5-10) m•a be used for certain conclusions about the location of

section, corresponding to extreme values of speed. We express from equation (5-10)

logarithmic derivative of the section:

I -

It follows from this that at dA=O and A01

I t I I (5-33)'
.j. 
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Cowseoantlyo a section, coresponding to a maximum speed at A< I and to

minimum speed at I>1, does not coincide with the minimum section, but i5 displaced

towards the expanding portion of the tube. Correspondingly, the section in the

diverging portion of tube also corresponds to the critical conditions (= 1 I

This means that the minimum and critical section of tube in the presence of friction

do not coincide. In this case, by assuming in (5-10) 1-1, we obtain:

dF k

-7 M-1- F >O.

5-4. Motion of 0as in a Cylindrical Tube

From equation (5-10) for a cylindrical tube dF =0 we obtain:

From preceding considerations and also directly from an analysis of equation

(3-14) it is easy to reach the conclusion that the critical speed of flow can occur

only in exit section of cylindrical tube. Actually, according to equation (5-14)

at A<I and dl>0 the flow in pipe is accelerated, and at I>I and dl<0

it is decelerated. The cae I-I1 in intermediate section of tube contradicts

equation (5-14) and in physically unrealistic.

Let us assume that drag coefficient is a constant value.* Then, equation

(5-14) can be integrated.

The integral of equation (5-14) we writs as:

where k, is the dimensionless speed in initial section of tube;

Sis dimensionless speed in certain section at a distance of i from the
J

initial section.

*Such assumption is justified only as a first approximation. In reality c
depends on the Re and 1 numbers.

2nr'
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We introduce a dimensionless coordinate, which is called the reduced length

of tube: 2k
-Z• I-

Then, equation (5-14a) may be written out as:

The relationship between a and Z with a constant value of I, is shown in

Fig. 53-3 Magnitude Z has a maximum• at 17=--- 1.

Maximum value of reduced length of tube is expressed by the formula

X.• - j 1+ 1fl. (5-16)

The curves Z(A) ) consist of two branches, corresponding to subsonic (•< 1)i

and supersonic (Z> I) flows In a pipe of constant section (Fig. 5-3).

The curves graphically illustrate the impossibility of a tranmition of speeds

in ,cylindrical tube from one region to another* In such a tube as was shown

B

Fig. 5-3. Dependence of
dimensionless speed at exit
of tube on speed at entry
and the reduced length of

tubs.

above, with a definite speed at entry 1, and corresponding length at exit, there

will be attained a critical speed (Xs==1).

Th section of curve AB (Fig. 5-3) corresponds to subsonic flows at entry into

tube (a,< 1) while the section CB corresponds to supersonic (1, >) . Point B

deteridnes the maxinu magnitude of the function I. for a given value of 1,.
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From formula (5-16) it follows that when 1,== I X --0.

Graphically, the dependence (5-16) is presented in Fig. 5-4. The curve also

has two branches, The lower branch corresponds to subsonic speeds at tube entry

- and the upper to supersonic speeds.

Thus, equation (5-16) shows that for cylindrical tube of given dimensions 1

and Dat a speed at tube exit 'It= I and

j - - for definite values k and to the dimen-

. .. sionless speed at tube entry is J,, and at

I--...... --- the sawe time the reduced gas flow q, has

- - ---- -- strictly specific values,
SU i

At a subsonic speed at entry to a
Fig. 5-4. Naxium reduced
length of tube depending up- eyindrical tube of length -eharacterized
on speed at entry.

by a drag coefficient ý,, in a *teady

motion there can pass through a maxiAum amount of gas, if 1,=-.

The absolute flow of as through a tube of maximum length will be equal to:

gF (pic,) R=-g M&1 PoaI I

•OF, p.,d

BY remembering that

I+

.-we obtains

Ir (/ )R -,.•. ! -•--iA ,,_, (s-r')

"Thus, for increasing the absolute flow of gas through cylindrical tube of

specific dimensions it is necessary to increase pressure of total stagnatJon at
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tube entry or with constant value PO1 - to decrease the temperature of stagnation

Too At the same time at exit section of tube there will be as before, a critical

speed, the absolute value of which decreases as the stagnation temperature lowers

However, the flow will increase owing to the increase in density.

At supersonic speeds at tube entry as the experiment shows there are detected

certain new properties of the flow, which are not described by equation (5-15).

Let us note that according to equation (5-15) at 11 >1 speed in tube must contin-

uously fall towards exit section according to curve CB in Fig. 5-3, pnd the pressure

-correspondingly continuous: increases. However, in reality the change in speeds

and pressures in tube in a number of oases occurs intermittently.

Prior to a more detailed discussion of this case of motion of gas, we shall

J find dependencies, determining variation of parameters of flow between two arbitrary

sections.

Since in an isolated tube i1e - const, then for any two sections there can be

written T0 1 - T - const. From this condition we obtain equation for T/T° ine0
W the form of equation (2-22).

For ratios of the pressures it is possible to use formulas (2-4la) and (2-42).

After simple transformations we obtain an association between the static and total

pressures in the following form: n k-I

Hence, at -a,•=-I , there is determined the critical ratio of pressures:

& (5-19)

Formula (5-19) shows that the critical ratio of pressures L for irreversible
pot

flows will be less than for isentropic flows for which

Equations (5-18) and (5-15) make it possible to construct graphs of the change

in pressures along a tube for given values of q and X.20
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, A sisilar graph is shown in Fig. 5-5 for the case of supersonic speed at tube

entry ,W - 176 &a q 0.45,3. Here, the curve AB characterizes increase in

pressure in tube to a critical value at point B, equal to:

S-=0.028.0,4,q = 0,239.

If there is known the distribution of speeds along the tube and it readily is

calculated by equation (5-14a) then it is poasible by formulas (4-20) and (4-24)

to determine speeds and pressures after a normal shock wave in each given section

(line CB).

After a normal shook the flow is subsonic and, consequently, the pressure in

it under the forces of friction should fall., Thus, if a normal shook occurs

directly in the entry section, then a subsequent change in pressure proceeds accord-

ing to curve CD.

Fig. 5-5. Distribution of pressures along a tube of constant

section.

The character of the change in pressures in the subsonic section of tube at differ-

ent intermediate positions of the shook are presented respectively b~y the curves

FM, HN etc. A diagram of pressures makes it possible to analyze the different

modes of flow in the tube.

* - At the indicated speed at entry 1a and the reduced flow of gas ql, modes in

"a tube vithout shocks are possible in those cases,, when 7 < AX , where the max-

inwa value of reduced length corresponds to point B. Under the condition Z<X

shocks in tube occur only while pressure at tube exit is greater than corresponding
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pressure, indicated by curve A1.

Let us assume that the tube has a length, determined by point I (Z = 0.35)

and pressure for exit section is given by point L, which lies on the curve CB. In

this case, the normal shock is located in exit section of tube IL. If pressure of

medium, where gas flows from the tube, is determined by point K, then the normal

shock is transferred into the tube and is locatod in section EF, in which section

FK corresponds to a lowering of the pressure in the subsonic section of the tube.

A subsequent increase of pressure in the medium results in a subsequent displacement

of the shock into the tube (toward entry section).

If pressure of the medium is determined by the point a, then in the tube

shocks do not occur while in the flow issuing from the tube, there will form a

cone shock (or system of plane oblique shocks, if the tube is of a rectilinear

section). With a decrease in pressure to magnitude of pressure of point I, the

intensity of the cone shock decreases. At point 1, the cone shock degenerates into

weak conical wave, at the intersection of which entropy does not change.*

If, finally, the pressure of medium is less than pressure at point I, then

behind the exit section there will form a conical stationary wave of rarefaction

and the flow of gas is extonded beyond the confines of the tube.

Curves of pressures in tube (Fig. 5-5) show that with a constant length Z. and

outlet pressure P. with an increase of speed at entry 1, a normal shock is dis-

placed towards the exit section. With an increase in resistance of tube (by means

of, for example, connection of an additional section of tube) the displacement of

shock occurs in the opposite direction (toward tube entry).

5-5. Frictional Losses in a Cylindrical Tube
* (Kxpriment4a Data)

Above there was considered motion of viscous gas in a tube under the assumption

*Different systems of shocks forming in flow at tube exit are considered in

detail In Chapter 6.
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that the drag coefficient r is constant.

In reality, drag coefficient depends on the Reynolds number and--in a general

ease--on the dimensionleas speed M . Such a dependence has been established

experimentally.

The Reynolda number for a arbitrary section of a cylindrical tube is determined

by the formula Re . _

For a cylindrical tubeS~Pc•pc,= -q~p~a = q, •-'7-i) Vi--i P*P,'r

consequently,

Re= (A- +2 7 )q

From formula (5-20) it is evident that the Re number varied along tube only

as a result of a change in the coefficient ot viscosity it, whioh depends on the

temperature. It is possible to show, however, that in heat-insulated tube theIA

changes in temperatures are small. Thus, with a change in speed of the water vapor

in a tube from 1=x0,2 to A,= I temperature varies by 11%j while the pressure

decreases by 4.4 times and the density by 5 times.

The change in coefficient of viscosity of air depending upon temperature can

be evaluated by the approximate formula

(A).

where a is a constant value; p, is a coefficient of viscosity at the temperature

T "21'P.

On basis of experimental data for air

4320076; re .•, 76 .1 0-4o

A more asimple dependence for p is expressed by the formula

"(.r = 1,757 + o.00483P1c

The basic problem of experimental investigation of adiabatic flows of gas in

tubes, reduces to a determination of the drag coefficients C and, consequently,
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to determining the losses of energy. The procedure of experimentallly determining

the local values of drag coefficients in different sections of tube is based on

Sequation (5-8), which after dividing all terus by % acquires the form:

dp A - (5-22)

By noting that for a cylindrical tube the product

pla qP.a. - qS. kp.

is a coistant value by bearing in Lind (2-46), we write equation (5-22) out in the
form: . dl-,-,• dx=O.

Here, the function % depends only on A according to formula (2-46a).

After substitution of this function we obtain:

d2t~+ 1• 1 k--! .,\I+ dZ--O.

Hence, it is possible to express the drag coefficient:. k~l l I A•
- "-23)

Squation (5-23) is the original for experimental determination of local values

of r. By proceeding in this equation to finite differences, we will have:

,C I+1 I I \A
" U +) " (5-24)

If there are known, the flow of gas G, the stagnation temperature, T and the
0

distribution of pressures along the tube [p - p (x)], then, according to formula

(5-24) there can be found an average drag coefficient for a certain small sector

of tube of length Cj . If the sectors hiFare chosen small I then the value of

determined in such a way does not differ greatly from its local value.

For finding the connection batween p and A it is possible to use formula

(5-18).

After having substituted the value qhere from the equation -f continuity,

"we obtain:

PON- q-.,U- +I) (3-25)
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.Let us consider at first certain results of an experimental investigation of

flows at low speeds in cylindrical tubes.

In Fig. 5-6 there is shown the change of velocity profile in tube depending

upon the Re number for a turbulent mode. Here is drawn diagram of speeds for a

laminar flow in a tube. A comprarinon of the curves shows that velocity profile

in a turbulent mode is significantly more "fined in"., than in a laminar flow, and

besides with an increase in the Re number the filling-in of profile increases.

00

Fig, 5-6. Distribution of speeds in
laminar and turbulent modes in a tube.
!MY: (a) Turbulent; (b) Laminar.

As is known, during a turbulent motion, occurring in tubes at Re>3000, dis-

placements of the macroparticles* in a transverse direction take place. Here,

particles of the external flow, possessing great kinetic onirgy in being transferred

to the surface, increase the kinetic energy of the particles along the wall moving

.-at low speeds, and conversely, the particles, which have moved from the wall to

#By macroparticles are understood particles of a fluid (gas), containing a
fairly large number of molecules-microparticles,--for possibility of applying laws
of statistics to them. 208
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core of flow, retard here the motion of fluid.

In accordance with change of profile of speed depending upon the Re number,

the drag coefficient of the tube must also vary as a function of this parameter.

For an evaluation of the drag coefficient of cylindrical tubes at low speeds

it is possible to use curves of the All-Union Thermotechnical Institute; these

curves were constructed by G. A. Murin (Fig. 5-7). Here the C coefficient is

presented in relation to the Re number and the value inversely proportional to the

relative roughness D/k,, where k, is the average height of protuberances of the

roughness, Let us note that at large values of D/k,(small roughness) values of C

according to curves of the All-Union Thermotechnical Institute satisfactorily agree

with the Nikuradue formula:

The AUl-Union Thermotechnical Institute (VTI) curves and formula (5-26) clearly

show that the influence of the Reynolds number on drag coefficient in a smooth tube

extends to very large values Re a 104. As the roughness increases the influence

of Re (at Re > 210' ) on the increase of roughness lessens. In Fig. 5-7 the

dotted line connects points, corresponding to those Re values, above which the

influence of this parameter is virtually unobserved. To the right of this line

is located region, which conventionally is oaalled self-modelling.*

Let us turn now to a consideration of influence of second basic dimensionless

number, the X number on the drag coefficient in tubes, Corresponding experimental

data were obtained at Central Scientific Research Institute for Boilers and Turbines

(rDTsKTI) *and at Moscow Institute of Power Engineering (MEI)*** and several other

organizations.

S •*Region in which drag coefficient is independent of the Reynolds number.

**A. A. Gukhman, N. V. Ilukhin, A. F. Gandelsman, and L. N. Maurits, Journal
.of Technical Physics, No. 12, 1954.

***B. S. Petukhov, A. S. Sukomel, and V. S. Protopopov. Investigation of friction
drag and coefficient of Temperature Recovery of Wall in Motion of Gas in round Tube
with a high subsonic speed. Heat-power Engineering, 1957, No. 3.
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Fig. 5•8. Distribution or pressure&, temperatures
and speeds along length of tube for subsonic speeds.

lines p increases. For the group of modes, corresponding to superaritical differ-

ential of pressures in the tube, the static pressure in exit section exceeds pros-,

sure of the environment but it is shown to be lower than the magnitude a, which

corresponds to critical outflow. The value . can be found by formulas (5-19) or

(5.45), after substituting 3X=_I.

The magnitude 'a is marked Jn Fig. 5-8 by a dotted, line. It follows from this

that the critical section which does not coincide with exit section of tube is

located inside at a certain small distance from the exit section. With increase

in fall of preseruess critical section is displaced towards the flow.

Special investigations of exit sector behind critical section show that in this

region the flow possesses supersonic speeds. Results of investigation of field of

speeds aid pressures in exit section are shown in Fig. 5-9. Here there is clearly

evident the nonuniformity in the distribution of static pressures along diameter

of tube, where the pressure on the axis irt all sections behind the critical in

* ;highor than along the wall.

Diagrams of "pees (Fig. 5-9) make it possible to conclude that thickness of
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Fig. 5-9. Change of static pressures and speeds
along diameter of tube near exit section.
KSY:(&) Limit of boundary layer;(b) Behind exit
section

the subsonic next-to-wall layer in exit section decreases in the direction of flow.

It is possible to assume that such a structure of flow is explained by interaction

of flowing steam with enviornment. Owing to the intense auction from the next-to-all.

layer, in the environment, there occurs its thinning in exit section (Pig. 5-9).

In this connection at core of flow there are created conditions, necessary for a

transition to supersonic speeds: section of flow core increases downstream. The

pressure of the environment "penetrates" through subsonic part of next-to-wall

lmyer inside exit section,, aend pressure on wall is found to be lower than the pres-

sure on the axis.I

OIe should emphasise that a reconstruction of the flow in exit section of pipe

in accompanied by sharp change in profile of speed in the next-to-wall layer.

In Fig., 5-10 there are plotted the values of 1=-L depending on X, on basis

of data from Central Scientific Research Institute for Boilers and Turbines

(ND T*KTI) and Moscow Institute of Power Engineering (MEI). The dependence of

onRe at large subsonic speeds according to experimental data is maintained

practicall the same as for an incompressible fluid. Consequently, the relation

', .taken at identical values of Re, reflects influence of only the N number.
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Fig. 5-10. Dependence of drag coefficient on N number at subsonic
speeds on basis of data of Central Scientific Research Institute
for Boilers and Turbines (MO To KTI) and the Moscow Institute of Power

Engineering (NEI)

The graph in Fig. 5-10 shows that at M O,70 to 0.75 drag coefficient is in-

dependent of N and is very close to CN* For this region the calculation of F. can

be made by any empirical formula [for example, (5-26)0 or by the All-Union Technical

Institute (VTI) curves.*

SIn the range of X numbers 0.0 to 0.8 and Re - 3.103 to 3.105 the formula, ob-

tained at the Moscow Institute of Power Engineering (MCI) agrees satisfactorily with

the experiment: •= OO.3VtRe_', (5-27)

where Re. - Re i is Re numberp related to length of tube.

At N>0.7toO.75 drag coefficient of tube decreases with an increase of K; an

especially intensive lowering of C is observed at speedsM>0.85.

Lot us remember that the change of pressure in an elementary section of pipe

dx is expressed by the well-known hydraulic formula:

djp. - tf~di.
The difference in forces of pressure, acting on separated element of liquidp

during uniform motion in pipe is equal frictional force on wall of pipe, i.e.j

~dp -t.-Ddx ?C~ dx.
Henee, there can be obtained a formu3a, associating frictional stress on wall

and 
(5 28

**In the latter case it is necessary to verify that for rough pipes the influence
of compressibility on I at hi<0.7 to 0.8 also will be small. This assumptioi is

* required as an experimental verification.
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In accordance with formula (5-28) results of above-discussed experimental

Investigation can be expressed as: influence, of compressibility, noticeably mani-

festing itself at X>0.75, results in a certain decrease of frictional force, rmlated

to kinetic energy of flow in a given section.

Physically this result in explained by the fact that with an increase in the X

number, the pressure gradients increase in tube (Fig. 5-8). An increase of the

pressure gradients in a nosale flow causes deformation of profile of speed along the

wall; the filling in of the profile of speed increases. Besides, the next-to-wall

laer at same time is made thinner.

Transonic flow is especially sensitive to a change of section which is seen

from equation (5-8). Therefores in the terminal section of pipe, where K>0.9, there

are observed very large negative pressure gradients and a correspondingly sharp

lowering of ~

A sharp decrease in C at M>0.9 is associated also with the fact that range

of speeds X - 0.9 to 1.0 is found near the end section of pipe, where next-to-wall

layer is destroyed. In a calculation by formula (5-28) a significant deformation of

speed profile in exit section of pipe is not taken into consideration.

By evaluating the influence of compressibility on the drag coefficient of pipe

at supersonic speeds, it is necessary to distinguish three basic modes of flow in

tube. The first mode corresponds to a shockless motion of flow, the speeds of which

in each section of pipe are supersonic, As was already shown, such a mode is possi-

ble, if the length of cylindrical tube is less than limiting value (Z< • amx) If,

however, in pipe there is a corresponding source of disturbance, then at X < suiaper-

sonic flow can be saturated with shook waves. Disturbance of flow in tube can be

6aused by an angular change in direction of wall, which will be formed in section of

Joint of Laval nozzle with tube. In simplest case, diverging section of nousle is

made conical with different aperture angles. The larger is the aperture angle Cf

nouule, the larger is the angular displacement of flow at tube entry and the more

21}



intense is t1P . shock, formed at poz t of change in direction of wall. Such modes of

flow with a coz4,.','A shock, when the I'lov up to exit section remains supersonic,

constitute the zcond proup of modes. •?inaUly, if X> X , then inside the pipe

there occurs a complicated system of shooks, after which the flow will be subsonic;

this is the third group of modes of flow. The dis-ýribution of parameters of flow

along length of tube in those indicated cases proves to be considerably different.

For the third group of modeaj when as a. result of shocks the flow becomes sub-

sonic, the character of distribution of pressure on basis of data of Neumann and

Lustwerk is shown in Fig. 5-11 (for A, 2.2). According to extent of increase in

pressure in exit section of tube, system of tihocks is transferred to the nosule.

The intensity of shocks Pt the name time increases. Let us note that extent of system

of shocks proves to be signifioant. ?or the system of shocks the flow is subsonic,

and pressure along the tube drops.

In accordance with different character of distribution of pressures along a

cylindrical tube at supersonic speeds also the drag coefficients will be different.

In a uniform supersonic flow in tube (without shocks) the drag coefficient has a

tiLJium value.

In Fig. 5-12 are plotted values of drag coefficient depending on X an basis of

data of Central Scientific Research Institute for Boilers and Turbines for the

interval of numbers M - 0.0 to 1.65. Here, there are reproduced experimentalpointsc

for subsonic speeds1 partially presented in Fig. 5-8, and there are added results

of later investigations for M>l. Characteristic for range of small supersonic

speeds should be assumedl.y the marked increase of C: here, the drag coefficient

varies from 0.007 to 0.018.

It is possible to assume that in this section there occurs a "turbulisation"

of the next-to-wall layer in tube, i.e.1transition of it from laminar to a turbulent

mode.* In the preceding range X - 0.95 to 1.03, where pressure gradients will

*The analogous character of change of C is noted in initial section o.l tube,
where there occurs a transition of the laminar mode to the turbulent.
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Fig. 5.11, Distribution of poseuurs@ along
lenath of tuabe at supersonic speeds at entryl

Al 0 2.2 (air),
attain maxim values# apparently, there ocours a I"laiminarisatiun" of the next-to.
wal layers since with large negative presure griPients intenity of tuurb cnt

pulsations dimninishes.

In the sector N - 1.25 to 1.6, C lowers and at N - 1.65 will attain a,
value CA 0,01. This lowering is wixplnied by the filling in of profile of speed

in the region of a supersonic flow with negative pressure gradients.
At M > 1.3, the influence of Reynolds number on C is .Ial.

"" - #, 41 4 L .-- -Ilai

S - - - €.- - -..-..

ngs• 5-1.2.. Dependence of coefficitent 4 an Mach
number fora cylindrical tube on basis of CentralScientific Reslearch Insittute for Bitlers and
Turbines data.
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0 ,5-6. BndM I&yer. Fundamental Concepts and EAuations*

Contemporary ideas about the mechanism of resistance of bodies, flowed

around bj a gas, and methods of calculating the resistance are based on the boundary

layer the*,W.*

ALe experience shows at large Re numbers influence of viscosity is concentrated

Fig. 5-13. Diagram of fortion of boundary layer on
surface of wing profile.
a--chanre in thickness and structure of layer along
burface: 1-laminar section of layer; 2--transitional
region; 3-turbulent section of layer; 4-laminar
sublayer; 5-transitional layer; 6--distribution of
speeds in different sections of layer.

SSections 5-6 to 5-12 were written jointly with A. Ye. Zaryankin.

Theory and methods of calculating boundary layer are given in detail in the
* monograph by L. G. Loytoyanekiy (See list of references).
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in the region of flow, directly adjacent to surface of body. This region haa a

small extent in comparison with length in direction of a normal to surface of body

and it is called the boundary Waer. Outside the boundary layer the flow has a

negligibly smal. vorticity and on this basis it is considered potential. In the

boundary layer the speeds vary from zero on surface of body to speed of potential

flow at outer limit. Since the thickness of layer is small, then gradients of

speeds in this region will attain large values and, consequently, flow here possoss-

as great vorticity.

The character of distribution of speeds in the boundary layer on flat wall is

shown in Fig. 5-13. Direotl4 on the wall the fluid adheres to surface ( =O ).

In a thin boundary layer with increasing distance from surface of body the speeds

vary greatly and at a small distance from surface will attain the speed of external

flow.

The resistance of streamlined bodies depends considerably on the mode of flow

in the boundary layer. The motion a fluid in a boundary layer may be laminar or

turbulent.

laws of change in speed along normals to surface for laminar and turbulent

modes must be different.

Since speeds in the boundary layer vary from zero on wall, then it is natural

to assume that certain section of boundary layer, adjacent to wall, always is in a

laminar mode. This assumption is confirmed by distribution of speeds along w' 1 in

Sboundary layer.

We now consider more specifically the condition of the formation of a boundary

layer on surface of a wing profile (Fig. 5-13).

In direction of flow along surface, the thickness of boundary layer a increaes.

We note that concept of an outer limit and thickness of boundary layer are not

determinate, since a change in longitudinal speeds during transition from boundary

layer to the external flow occurs smoothly. Approximately the outer limit of

layer is determined at those points, where longitudinal speed differs from the

- t" -: 1"aye I i7 •1 ' " - II ' ' i



speed of external flow by a small magnitude of an order of one percent (1%).

Outer limit of boundary layer does not coincide with the lines of flow, since

particles of external flow continuously penetrate into the boundary layer (Fig. 5-13).

Fore section of layer, located near the tip of profile, usually is laminar.

At a small distance from tip (section II in Fig. 5-13, a and b) is found a laminar

velocity profile. In a certain section III, there begins a transition from a

laminar orderly motion to a turbulent motion which bears an oscillating character.

In the transitional zone, the flow in boundary layer is mixed: significant

part of layer, nearest to surface, is in a aminar mode.

Beyond the transitional region there is developed a steady turbulent layer. Hae

region of the laminar sublayer is so small that experimentally it is difficult to do-

toot. As can be seen from Fig. 5-13b, turbulent layer has a fuller velocity profile.

The diagram of the formation of a boundary layer in Fig. 5-13 is expressed not

on an identical scale along the x - and y - a"es. The thickness of the layer a is

S very small in comparison with dimensions of the body and amounts to hundredths and

thousandths of the chord of profile.

Calculation of a laminar boundary layer is based on differential equations of

energy (5-3) and the motion of a viscous fluid (5-4). By using cited above physical

,.peculiarities of motion in layer, equation (5-4) can be considerably simplified.

For this purpose we now turn in the equations (5-4) to dimensionless magnitudes.

For simplicity let us consider steady motion of an incompressible fluid. As scales

of longitudinal speeds and coordinates we select a certain characteristic speed Uo

and characteristic linear dimension Lo. Scales of transverse speeds and coordinates

are designated respectively by v. and a . We designate scales for pressure and den-

sity p0 and p. . Then after transformations, analogous to transformations in Secticn

5-2, we obtain following system of equations:
O•u p.p p• " ctou ,L, ju.

"".- + =
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iScales at magnitudes, appearing in the system of equations (5-29), can be

selected on the basis of following considerations. If the scales u0 and L0 express

the characteristic speed and linear dimension of the streamlined body, then, the

magnitudes vo. 8, p, and p0 for the present remain indefinite. By using this

arbitrary rule, equations (5-29) are readily reduced to a canonical form.

2Indeed, by assuming p0 - f Us, Ps- 1 we obtain I'- . and the transverse
P4 ,

scales vo and ? will be selected in such a way that the coefficients 'e- and

are constant and independent of the Re number.

Let us assime Lo.# i
same

In principle these complexes can be equated to any constant, but in the given

case expressions for transverse scales are obtained most readily.

In solving written system relative to v. and 8 for scales of transverse speeds

and linear dimensions,, we obtain the following values

4 (5-30)
Here, equations (5-29) will acquire the form:

a am +p -- L'" I OU +_
;F+ y dXu ke - g

0d . do Vt R M
r +, a, W= .,,o.

If we admit that the unknown magnitudes M. 1, g and their derivatives with

increase in Reynolds number tend to definite limits at fixed points, then at large

Re in the equations (5-31) it is possible to discard all terms, having the factors

ande , as small magnitudes in comparison to other terms.Re R

As a result of converting again to dimensional magnitudes we obtain differential

equationo of the laminar boundary layer in L. Prandtl's form

to on •" I OP-- ,U;.

emII d II I -

=I. (5-32)



System (5-32) must be solved under the following boundary conditions:

Y=•O; u-&; v=O;
L -6. 00; U -6 (X).

The latter condition means that speed in boundary layer transforms asymptotic-,

ally to the speed of external flow. In reality this transition, as has already

been mentioned, occurs at value of b, commensurable with transverse scale 8 .

The obtained condition of L- =0 means that distribution of pressures at outer

limit of layer and on surface of streamlined body coincides. It follows from this

that at all points of cross section of layer, the pressures are identical, i.e.1

prossure of external flow is transmitted through boundary layer to surface of body

without change.

The condition ý--O made it possible to explain the very important phenomenon

of separation of boundary layer. Let us consider the flow around a certain curvi-

linear surface AB (Fig. 5-14), by assuming that pressure of external flow along

this surface at first decreases, will attain a minimum value at the point M and

then increases. The section of external flow, in which pressure gradient is negative

(-L!<Oj. is called the nozxle or convergent sector. Region of flow after point M,

characterized by positive pressure gradients (0 >0), is called the diffuser

sector. In the nozzle sector, the external flow is accelerated, and in the diffuser

is decelerated. By considering that in boundary layer -=0,* we conclude that a

completely analogous distribution of pressures takes place also along the surface

AB at any distance M<4 in the boundary layer.

a r

M If

Fig. 5-14. Diag.um of formation of separation of boundary layer.
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Within the lUmitn of the boundary layer speeds before point M increase, and

after it decrease (see diagrams of speeds in Fig. 5-14). Particles of the fluid

near wall possess small kinetic energy, in which in diffuser region along surface

AB reserve of kinetic particle energy decreases. As a result in a certain section

8, particles along wall cannot surmount the stagnation influence of external flow

and they remain behind. The diagram of speeds acquires characteristic peaked form.

On the wall, curve of speeds satisfies condition

N\ = (5-320-

Further beyond point S under iifluence of a differential of pressures, directed

against flow, a return motion of particles along wall begins. In encountering the

main flow the returning particles are pushed from wall which also results in a

separation of the boundary layer and in sharp increase in its thickness. Beyond

the point of the separation S. diagram of speeds has also the very characteristic

loop-shaped form, in which directly along the wall

S0.0

The discussion shows that the aeparation of the boundary layer during flw

around a smooth wall can occur only in the diff1er region.

In ,uing equations (5-32), it is readily shown that the position of point of

separation of a laminar boundary layer in independent of the Re number. Actually,

the solution of system (5-32), gives:

u=(X, it), (5-32b.)

where x and Z are dimensionless coordinates.

Then, br having differentiated with respect to y and by using at the point of

separating the condition (5-32a), we obtain:

(AS. o)= o.
Inasmuch as the scale along x-axis does not depend on the Re number u reach

the conclusion that the coordinate of point of separation of a laminar layer also

is indepondent of the Reynolds number.
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5-7. Arbitrary Thicknesses and tho Integral
Relationship for a Boundary Layer

Above it was indicated that concept of thickness of boundary layer does not

. have an accurate quantitative riefinition. Indeed, the speed in boundary layor u

with an increase of y asymptotically approaches the value of speed of external flow

%u0 . The magnitude a depends on where there in selected the point, arbitrarily

indicating the limit of the layer.

Therefore, in ealculations of the boundary layer there are introduced other

integral thicknesses, depending on &:: thickness of displacement 8*, momentum

thicknesa 8 * and energy thickness a

For ascertaining physical meaning of indicated thicknesses we shall compare

flow of an ideal and viscous fluid near a rigid wall (Fig. 5-15).

In the absence of friction for a unit of time through cross section of flow

with a height 4Z and width, equal to unity, mass e•oU & will flow. In the

boundary layer during the same time through section z urss ?R& will flow.

The difference between these quantities will amount to:

dyU

d" x

Fig. 3-15. Diagram for determining arbitrary
thicknesses of boundary layer (a) For deriving
equations of momentum for a boundary (b).
KEY: (a) Line of flow; (b) Boundary layer limit.
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The second integral on right side In small in comparison with the first.

Therefore an integration made only within the limits of physical thickness of layer

8. sufficeo.

After having divided the determined ewoess of M8s by pue, we obtain:

- dy. (5-.33)

The magnitude I indicates displacement of the line of flow in direction of

external noryal to contour of streamlined body.

At the sawe time 8 haracterises decrease in the flow of fluid through the

section of layer, "normal" to wall, caused by "displacemept" of liqui' by boundary

layer, and therefore, is called the thickness of displa'ement.

The moment= thickness 5• is equal to that thickness of the layer of fluid,

moving with speed u. outside of boundary layers whose moentum is equal to the

impulse of friction forces in the boundary layer. This momentum, "lost" in boundary

layer, will be equal to: & a

If divide the obtained expression by pa.t . Then we obtain:

S.o

The Was of fluid pudy loses kinetic energy in boundary layer, equal to

•(Q•:--:t)dy . For the entire layer thi3 lose will amount, to:

Then the energy thickness

is the taickness of fluid movnig outside of layer and possessing the kinetic

energy, lost in the boundary layer.

For solution of problems on the flow of compressible fluid in a number of caues,

it is expedient to have an identical structure of formulas, determining the integral

thicknesses. Therefore, together with formula (5-33) thickness of displacement a

frequently is calculated by the formlan

(5-36)2?r.



In this connection, naturally the previous physical meaning of thickness of

displacement is destroyed. For an incompressible fluid equations (5-33) and (5-36)

are found to be identical.

The solution of the problem on the resistance of a body in the flow of a

viscous fluid with a continuous flow around reduces to the establishment of dis-

tribution of forces of friction along streamlined surfaces of body, and conuequently,

to a calculation of the boundary layer.

The widely used method of approximatin in calculations is based on evaluating

the change in momentum in boundary layer. We shall make such an evaluation.

For a determination of the thickness of displacement, it follows that entire

mass of fluid, flowing into boundary layer, can be arbitrarily replaced by a Mass,

located between the line ab and wall Cd (Fig. 5-15), speed of which is equal to

sero ("displaced" mass), and mass, flowing above ab with a speed u.

From the side of wall frictional forces will act on the displaced mass and

* •in the direction of flow forces of pressure will be applied. Speeds above the

line of displacement ab are equal to %uU(•) also within limits of considered

volume, on the basis of differential equations of a boundary layer (5-32) • =-0.

In applying the equation of momentum there can be found the magnitude of loss of

amentum in the section dx:
di =,sdx + d .53

where s,dx and dp&* are the impulses of frictional and pressure fories acting

on the displaced mass of the fluid.

The momentum I, on the basis of equation (5-34) can be expressed in terms of

the lose of momentum:

Inasmuch as at the external limit of boundary layer the flow is considered

*The derivation of the integral relationship presented below in given ly
A. P. Melnikov.
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4Ppotential, longitudinal pressure gradient wreadily i expressed on the basis

of the Bernoulli equation by the speed u and density p,-:

!L ft.i -P4lNU*.
In substituting this magnitude in (5e37)t, we find:

an dpe + Ie rsse + t e" (-) n (5-37a)
We substitute further dea sp. dp I

Udx sip TX

and then divide (5-37a by An8 oA a result, we obtain for a compressible

fluid the following equation: di" (2 + If M.)

HereoM w

Equation (5-38 is called the integral relationshig since magnitudes a**

and &ý are expressed by the integrals (5-33) arnd (5-34).
Integral relationship (5-38) for a boundary layer can be obtained by not resort-

ing to concept of thickness of displacement.. For this purpose the equation of

momentum is applied to a volume of fluid, enclosed between two infinitely close cross

sections of boundary layer Fig. 5.-15b). By substituting in (5-38) expressions for

the arbitrary thckese go an by, replacing u1 by !t after transforM-

dX 009

- 'l - (5-39a)
7X_ " ds

The integral relationship for a boundary layer is useful for calculating both

laminar and also turbulent boundary layers, since in its derivation no assumptions

were made with respect to the tangential stress ;. This magnitude is deter-

mined differently depending on mode of flow of fluid in boundary layer which also is

a reflection of the different nature of friction in laminar and turbulent motions.

In the generation of separation the equation of momentum can servo for

determining the location of point of separation at which s I = 0.
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5-8. A More General Ezression for the Coefficient of
Friction DraR in a Boundary Layer in the Presence of a

Pressure Gradient.

In the equation of momentum, there remain two sought variables: thickness of
layer 8 (or the mutually associated arbitrary thicknesses V and a**) and frictional

stress on wall '..

In the general case v. is determined by speed at external limit of boundary

layer, its derivatives u•, ul, u."' et cetera by speed at external limit of boundary

example, the momentum thickness P*. density p , temperature T, and coefficient

of kinematic viscosity v.

Consequently,

io=y(oU; <o; uo,... T; p; 6"; (5-40)

By using basic assumptions of the theory of dimensionality from the functional

dependence (5-40) it is simple to obtain a structural formula for the drag.

'coefficient.

We adopt. as the basic dimensiona24tjps the speeds N0, the densities, PS

lengths 8" and the temperatures T. By a simple verification we are readily con-

vinced that, by combining the indicated magnitudes, there can be obtained a dimen-

sionality of all remaining parameters. Actually, cs has the dimensionality of

kg/iA2 . The same dimensionality will apply to the complex pa. I
(kg . &so2 / r/4 _ m2/8ec 2 ]. Consequently, the ratio %1PouO , which is a local

coefficient of friction c,, is found to be dimensionless. By converting in

expression (5-40) frot dimensional magnitudes to dimensionless, we obtain

S--Re*') M; M-; (5-41)
Here Re**= F- is the Reynolds number, calculated on the basis of the

momentum thickness.

The ntmber of dimensionless parameters in expression (5-41) can be reduced, if
w assume that the frictional stress is determined just as in case of lami ar flow

'by only the first derivative of the speed u 0.
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This assumption in confirmed for disturbed flows and flows with small

.positive pressure gradients. Near point of separation the role of leading (highest) *
derivative increases, and here the maintaining of only the first darivative already

is insufficient.

Further, it is possible to show that in relating the physical constant 9 and p

to temperature conditions on wall M number in excluded from the dependeniýe (5-41).

Thus, by taking into account the adopted assumptions

* 2L..,so' (5-42)

where Re* v * is the kinemat.c viscosity, calculated on the basis

of temperature of wall.

We expand (5-42) into a series with respect to the parameter .o .

c~~~ ~ ~~ .=~-=.R7+j(Re**)
(e +

Her 411 ii a loca (5-43)

S Here CI is a local coefficient of frictions calculated on basis of density along

wall p..

hpression (5-43) is general both for a laminar, as well as for turbulent modes

of flow in a boundary layer. Depending upon the mode of flow, the coefficients

'p.*. 1,..€n etc. win acquire different values.

We find a concrete form of expression (5-43) for laminar flow. For this pur-

pose we write (5-43) in such a form:

1+ (5-44)

At u,. - 0 formula (5-44) should conform with corresponding formula for drag

coefficient of flat plate during a gradientless flow around it.

In this case, problem is solved fairly, accurately by means of numerical in-

tegration of the system (5-32) and independently of method of solution for a flow

without gradient, the drag coefficient c. in expressed by the formula
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where aso is a constant value.

Consequently,
e ,=.•.[+ ±Le.*1 +_ 4*0

=g.. + .. v

At the point of separation t,=O; in this case the exprossion in square

brackets should vanish. In taking into consideration that position of point of

separation does not depend on Re** number, we obtain: c, const; •,- const;

conet eet. Hence

The coefficients a ai, 2 etc. in the general case, are determined experi-

mentally. Nowever, for a laminar boundary layer they can be determined also

theoretinasly. Thus, for example, A. M. Basin obtained ao - 0,22; a - 1.85;

a2  -- 7.35
We designate (**'

and C(I)=Ia.+a,! +a.1'+...1; (5-47)

then U ).
(5-48)

The parameter J frequently is called the shape parameter; as will be pointed

out below, it determines the shape of profile of speed in the lamirar boundary

layr. One th.nald note that structure of the shape parameter, containing the

derivative !9," reflecte influence of longitudinal pressure gradient of the ex-

ternal flow.

For a turbulent layer, numerous experimsntAl data give at • - 0:

C11j O .= C R" (5-49)

and for drag coefficient, there is obtained from (;-44) the following forIIIa:

e• = Re-- r..f arF..i..(5-so)

L Hes

r. - Rewm  (5-51)
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The para,,t,0(The ,",•,i, parameter), just am the shape parameter I, reflects

the influence of longitudinal, pressure gradient and Reynolds, nu'ber on the velocity

profile in a turbulent lyer.

y knmowing the dependence for C! and the law of change of manitude 11

depending upon longitudinal pressure gradient, it is siaple to obtain from the

integral relationship (5-38) a differential equation for determining the thicknesses

of a boundary layer.

W shall consider separately the solution of equation (5-38) for laminar and

turbulent layere.
5-9o CAlou:lAt on of' • Boundary LlAl, ;•..t hl

5r*9, ~ of aoda

The calculation of a boundary layer reduces to the solution of the integral

relationship (5-38) [or (5-39)], which contains threo unknown magnitudest the

momentum thickness i!', the drag coefficient c,=-!t and magitude Hf a= (H i )
Oonsequentl3' for the solution of problem it is necessary to have still two

additional relationships, asooiating the indicated magnitudeso. D using the more

general expression (5-48) for drag ooeffioient and by considering for simplioity

tho @as* of an MocpressiAle fluids we obtain an equation with two unknown$a 6**

and H# the association between which is simple to obtain, if the profi•e of speed

In boundary layer is known.

Xn the general cue, the speed in cross section of layer depends on local

pressure gradient and distance frcm the wal Z. The influence of pressure gradient

is taken into conslderation by the shape parameter f , Consequentlys the relative

velocity at. point of layer can be presented in suah a form-

me" I

. n
"L MI'-(")]('



After integrating obtainied expression i Lthin the indicated limits, we find:

* or
S=H .(5-52,)

Purther, after substituting into the equat-ion (5-38) the relationships (5-48)

and (5-52), we obtain after simple transformations a first order differential

iequation relative to the shape parameter J:

9* 9*(5-53)

Here o
S~F-2 (C: (1)- 2!1(2 + H (/)1.

The specific type of function F(I) depends on the shape of speed profile in

boundary layer. Calculations show that F(J) differs little from a linear function,

I~e. F (1) a a- i.

Zn this respect, equation (5-53) transformw to a linear equation relative to

the parameter *

integral of which has the forms

It at X 0 uo - 0, then from condition of finiteness of f a constant of

integration o 0• , shou3 be assumed.

In praitioe ,it is more convenient to make caloulations by %sing dimensionless

magnitudes.

After assuming 11 o- Q and X -r ,whsro u to is the speed of' incident

flow, wid L is length of streazlined lurtace, we obtains

The constants & and b can be assumed equal to 0.,45 and 5.35 respeotively.

For the momentum thickness we obtains



" . ,.ther, by formula (5-48) it is simple to determine the local drag coefficient
, , te'C . ' I ,l;t ( j Il ,•

e1 also by the expression 1 - Ii (I)a -that is the dispcoement thtakoess.

Values of functions I(I) •nd H(f) are shown in Fig. 5-16.

- - -, - - ... e

--.. " "7I - .. .....-

-4~ go:~0 444011p-; 4Ou as 410

Fig. 5-16. Dpeendence of magnitudes , F and H on

the eparamter I,.

Tho considered method of calcuUtion can be extended &Iso to the case of flow

or acmapressible fluid, it we conivert to a now variable, proposod b7 A. A. Doradiiituyn

Then for a compressible fluid we obtain:
(k454I'" 6

The calculation by formuxAs (54) 55) 55)and (5-56) are found to be

'eaively simple and assure an entirely satisfactory aoauraoy.

ror eximple) we now calculate the laminar boundary layer over a flat plate"

Hereo - oonst u =-0; -O anda=1.

_232
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Then, from (5-55), (5-47) and (5-48) we obtain:

so* 1,301.L 0J~§;~ .22;
i -4i

0 ,2i,0.22 zi-r- 0,~31.

1.-cgp4 -0.332

5-10. Transition of Laminar Boundary I&Xsr
Into a Turbulent One

Undor certain conditions a lasminar boundary layer loses stability and trans-

forms into a turbulent. The tentative limit of loss of stability of a laminar

flow can be established by the critical Reynolds number Rear' By using analogy

between phenomena of transition from a laminar to a turbulent mode in d cylindrical

tube and in a boundary layer, it in possible, as has already been indicated, to

Introduce the oharacteristic Reynolds number. for the layer, relative to the thick-
0hnessesn 8, and 8"u

8xperimental data indicate that the critical values of Re, number of the

boundary layer have the sam order as that for tubes, but they can fluctuate within

wider limits (Re& 2,000 to 5,000). According to numerous investigations, the
CY

critical Reor number depends basically on the state of surface of streamlined body,

degree of turbulence (perturbation) of external flow and gradient of speed# i.e.,

paramter f.

Theoretical and experimental investigations of the stability of laminar boundary

layer have indicated that "loss of stability" occurs either as a result of utuper-

pweition of the disturbances, caused by protuberances in the roughness on the surface

of streamlined body, or as result of finite disturbances, introduced into boundary

*The magnitude Re** was introduced earlier in deriving equation (5-41) st &l.
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layer by the external flow. The first cause is found to significanL aay with a minor

turbulence of the incident flow (order 0.2%) and high degree of roughness.

In using general assumptions in the theory of dimensionality and oxperimontal

data, it is simple to obtain an appropriate relationship in explicit form. In

omitting its derivation,, we now write the formula for deteruining Re cr , obtained

by A. P. Mslnikov: o,f I- -2

Ret~=jr q 1 v)' +225, 5-8

where go is the initial degree of turbulence;

I is the shape parameter;

to is the value of the shape parameter at point of separation; for a lamina:"

layer it is possible to assume /, - -- 0.085.

Thus, for determining the point of loss of stability a laminar boundary

layer it is necessary to find by equation (5-55) the change in the momentum thick-

ness along surface of body under consideration and to construct the curves Re, -

=?(x)[equation (5-58)] and Re---,(i)=. 0.

Intersection point of indicated curves will be the sought coordinate of ;cr

Results of the experimental investigation indicate that transition of laminar

boundary layer to a turbulent occurs in a certain region, whose dimensions depend

on the local pressure gradient, the M and Re numbers, the degree of turbulence and

certain ooer factors.

The determination of the position and extent of transitional son., and also

character of change of a'" in this sons comprises an important part of the problem

in calculating mixed layer and, in particular, subsequent turbulent sector.*

The transitional region can be determined experimentally by means of aeasure-

ment of profiles of speed in different sections along length of surface. Character

of change of profile of speed in transitional region can be traced in Fig. 5-17,a.

At a distance x - 35 m from loading edge of plate, the layer is laminar; an
points will form a curve, corresponding to equation 2 (- 2 - Y.

*L. Ho Zysina-Moloshen's works and others are devoted to an investigation
of the transitional region.
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Fig. 5-17. &--change of profile of speed in boundary isyor along
flat wall. b-change of momentum t~hickness along a flat wal~l.
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the transition in the sector Ix ;P 50 mm, profiles of speed abruptly are deformed

and acquire a form, typical for a turbulent boundary layer.

Profiles or the speed in boundary layer make it possible to calculate the

momentum thickness '8"(X)) and on basis of character of change of this magni-

tude to fix the extent of transitional %one (Fig. 5-17, b))

The length of the transitional region a assumedly is determined in fractions

of the total length of streamlined surface.

Changes of a in this region are characterized by the magnitude

Re. • 5.80
where Re,, 9 kare the Re number and the momentum thickness at the end and Re -

is the Re number and at the beginninW of the transitional region. In

a flow without gradient, the magnitltde r * 0 .

In the general case, rN* depends on profile of speed at the beginning of

transitional zone, Re and H numbers, and the degree of turbulence. With an increase

of Re and X numbers magnitude r** somewhat increases (Fig. 5-18). On basis of

experiments at the Moscow Institute of Power Engineering a change in Z° within

the limits 0.5--l.5% does not result in noticeable changes of the magnitude of rN*.

A further increase of E. causes a sharp decrease in r**.

For characteristics of the speed profile's influence in Fig. 5-19 is shown

graph r** - :,(I.), where f, is the shape parameter at the beginning of the transi-

tional sone. An is evident from curve, with an increase of shape parmeter r**

increases. Analogously depending on the shape parameter f* also the extent of

transitional sone I (Fig. 5-19) changes. Such a behavior of the curves r--=,y (/,)

and s=4y,(fj can be explained in the following manner. In the transitional zone,

roe.
4V 4 4.10.4 as 7 04$ 4 40

S- Dependence of magnitude r** on H number.



an result of a transverse displacement of the particles, the thickness of boundary

layer increases, and profile of speed becomes fuller. If, as a result of increase

of the thickness of ; there occurs an increase of S • then, an increase

in fullness of profile of speed causes a decrease irA the integral thickness of 6 •.

-In the nossle region, of basic importance io the increase in thickness of the

boundary layer g, since here profile of speed is fairly fýll and as a result of

the transition its fullness changes insignificantly. Conversely, in diffuser

region as a result of transition of laminar flow to turbulent, there occurs a

significant 4eformation of profile of speed, in which the greater this deformation

proves to be, the larger is the positive pressure gradient in the place where the

transition occurs.

At a certain falue of parameter f in diffuser region both factors, affect-

int the magnitude 8 a, mutuall&y are compensated and magnitude r• is found to be

equal to unity. The extent of the transitional sone at samw time also proves to be

significant. On basis of experimonts at Moscow Institute of Power Engineering (M91),

S** i1 at I. -- 0.06 to 0.07.

-.D -4A -40-i,-40 0 /,0 '.0 4 *.o ,0

Fig. 5-19. Dependence of magnitude r* and

a on the shape parameter /,.

SIt must be noted that in the nouzle repion with large pressure gradiei.ts a
transition of turbulent layer into a laminar (page 215) is possible. Such i
tranisition is very probable at W1-• I.

237



I 5 ' ' , ' "P •? •f• ' •' ,'l• ' • '........ .. ' - '. , . . . • • ' ", . . .• -

t hoeve'r', for a reason the transition begins atl<-O.O7, then, apparentl,

the process of turbulisation of the layer and reconctruction of profile of speed

wi•U oc•,ur against the flow, while profile of a laminar layer will not be found

to be sufficiently stable.

Hence, incidentally it follows that the separation of boundary layer can ocour

only -in the region either of laminar, or turbulant motion, since transition of a

laminar layer to turbulent in the diffuser region occurs at a value of parameter f

smaller then its value at the point of separation.

On the basis of processing experimntal data for calcu)ation, the transitional

regions are Obtained by following empirical formulas:

roa-(7 +10) +0,12M. ( 0)

In knowing the magnitudes i and r**, there are readily found the coordinates

of the sectors from which one should make a calculation of the turbulent layer,

and the value of its momentum thickness.

5-fi. Calculation of Turbulent Boundary Layer

The calculation of turbulent boundary layer is constructed on the basis of

experimental data, which makes it possible to express approximately the friction

stress in the layer.

In many cases it is convenient to use an approximate power distribution law

of speeds in the layer, expressed by the formula

Formula (5-61) is constructed on the basis of a comparison of profiles of

speed in turbulent layer and in a cylindrical tube. As was pointed out, the

velocity profile in pipe varies with a change of Re number (Fig. 5-6). Consequently,
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the exponent n in formula (5-61) is function of the Reynolds number. Thus, the

basis of experiments of N. Nikuradze an exponent of n power varies within, the

0 imto of 1to 1 during change of Re from 4 - 103 to 3 a106. However, as, a first
6 10

approxbiation, the exponent of n power can be assumed as constant in a definite

range of Reynolds numbers. In the calculations frequently it is assumed n
7

and the profile of speed is given by the formula a

(5-62)
The friction stress on wall during turbulent motion can be represented also

by a simplified empirical dependence

By substituting the empirical coefficients C 0 0.00655, and m- -0.166 into

formula (5-63) and by considering the particular case of'a flow without gradient

from equation (5-38) we find: CA%-0--0,0065 5 Re"-*-'I.

(5-64)

Wb introduce in this equation Re,-- . Let us note that

d�V d dRe" (5-65)

Then differential equation for the momentum thickness wifl be written as:
d Re" I,06A5

In assuming that on wall there will be formed only a turbulent laer, we

integrate equation (5-66). Then, we obtain:

r
Re"=zO,015 3 Re,.

Hence, by replacing Re** and Rex, we find an equation for the momentum thickness:

r,1
4-=0,0153(x U; )

or after expressing a** as a function of ReV we find:

C=o.o53x "r. (5-8)
The obtained simple solution for the momentum thickness in a turbulent layer

does not take into consideration the infJ,uonce of compresuibility and of longitudinal

pressure gradient. It is valid at M'10,i and LO-dx

As has already been mentioned, the equation of momentum (5-38) associttes

-three unknown magnitudes: a *, 9 ** and i.. Additional associations, nectssary
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for solution of problem, are established experimentally.

In Fig. 5-20, empirical dependence H. M H(M) for a flat plate with zero

pressure gradient is given. The magnitudeHl depends greatLy on N number; this

dependence can be approximately represented by following formula:

H.-=- H(I +eM,)=H= (1 40,3 MA), (5-69)

where for an imcoiprossible fluid with a zero pressure gradient it is possible

to assume Hm m 1.3 to 1.4, in which a smaller value of H.. corresponds to large

Re numbers. With an increase in the H number the relative momentum thioknoess

decreases somewhat (Fig. 5-26).

The influence of pressure gradient on the parameter H can be seen in Fig. 5-21,

where the 4ependence i - H/H on the Euri. parameter r is given.

It follows from this that in mono of moderate values of parameter I'

(--0.015 <'I'< 0.02)l varies by 7%. Therefore, in constructing the solution in the

mentioned range only the variation of NonK(M) will be considered. /

For a drag coefficient in a turbulent layer for the general cases formula

(5-50) was obtained. If we relate s* to the density at outer limit/of bounary

layer pp, then, formula (5-50) can be presented in the form:

w- 9+ 0) Re,-"' 0 + -2 ,f (5-70)

Fi$. •5•20. Influence of X number on the parameter Ho.

-- S

Z 4. - 0 -40 0 41, 4. 0 45 40 I

Fig. 5-21. Variation of magnitude i depending on the Buri parameter V.
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we set up (5-69) and (5-70) into a integral relationship (5-38). After

simpleo, hut laborious transformations there can be obtained a differential equation

relitive to concerning parweter r in the following form: L:

r, + p(.r + Q(;=o, (-•

'where ; is the dimensionless length of streamlined surface.

,.,• A I •I /'"", - - - . __i/ --41- - - -' " -

It ~i .... W I
-4/5---0~- - - /

AV MMO -- 4

JW -40 - we -- : 1~--

V -40 c- -- :2 -s - -

V-40 - -d:e o 404/5- ----- 5

4 44ato -7 40 of ad -ca 44 8_4e 4o u

Fig. 5-22,* a-dependence of functions 919 and go on
&,; b-dependenc. of func tions 1,.41 and t. on i,.

3quation (5-71) pertains to type of linear and can be reduced to quadratures

and solved relative to the parameter Jr. It serves for determining the pi.ameter

r,by eliminating the region, near the point of separation.

With the equality to sero of constant a and tending of A towards serci, the

solution transforms to formula (5-67).

SBy introducing a number of simplificitions, we obtain during small pressure
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gr"dient. (r•>-0.02) for the momentum thickness of the expression

21.45 [(6S~.IRO 2 (6 02).S
+o0,0026 [ :-(6-a:).." ' (5-72)

Here 11, and a. are values of the momentum thickness and dimensionless
eL

speed at the beginning of turbulent sector; Re* -- is the Reynolds number,
determined by the critical speed a and the kinematic viscosity on the wall.

In introducing the designations:

* ,=m,,(6 _a),,o,.
130,0026 : (6- :)*I (5-73)

we transform (5-72) to the form:

ire

The functions flo f 2 , and 13 on 1, are presented in Fig. 5-22,a.

The calculation by formula (5-74) with use of calculating graphs is found to

be relatively simple and is in good agreement with experimental data.

With large pressure gradients for momentum thickness we obtain:

Rare, oNy

fS= 0,0078 %0,6 (6-- 1:)" "l.31kl (5-76)

The corresponding values , y?, and %, are shown in Pig. 5-22,b.

In conclusion we shall dwell on essential difference btween properties of

laminar and turbulent layers. For the purpose, in the Table 5-1 are presented

the basic calculating formulas for simplest case of flow around a flat wall (flow

with gradient) by an incompressible fluid.
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Table 5-1

:p i norpa.I ..... ___""- 11W. Hil l, ... I C) .1aHIlHapnIl J. J yll!.wrluuiI

nUHN CHOPOCY-A

Towuaa.n ion fto .2I()7 •)i A 0%S
I I

_ _ _ _ _ _ _ _ _ - S 3 , .e 0 ,2 1 I x R e. r

WIINM,, • 1,72x Rex 0.31 t O,02z Rev4-,OM0

Taiuua lOTe- 44. 0,W4x RI,-r ,1- a," aO,Ol5x Re1T-
pm a nfat S0o,11•oM MO0,07l6

YpOINms-O321 0.0 13,OI#1p RO r

NTKhCMI4 K04 I IItNT weu -",61I Rec, O.€1 0,(3 Re, "

CgR/€i11rLlels 1,328 RexY CI -- O,iMO R

KIT: a) Basic characteristics or boundary layr; b)
Node (Regime) of boundary layer; a) Laminar d) Turbulent;
.) Distribution law of speeds along a soetion of layer;
f) Thickness of layer g) Thickness of displacement; h)
N mentum thicknses; i) friition stress; J) Local oooffi-
cignt of friction; k) Drag coefficient of friction.

A comparison shows: 1) speed profile in turbulent layer is more filled in than

in the laminar; 2) thickness of turbulent layer increases along wall significantly

mlore rapidly than that of laminar, since in the -first case & increases proportion-

ateiy to x6/ 7 and in #,he second-proportionally to x-/2, 3) a comparison oW. local

drag coefficients of friction shows that with identical Re values itsuioe of

tion-in turbuet boundary layer is uinif oantLy higher t.han in the 3dni•nar.

This very important conclusion is woen corroborated by' (xperimental d&,ta.

'In Fig. 5-23 are given experimental and calculation relationships of the
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conffin,0ents ca, obtained for a turbulent mode by means of different seal-

empirical formulas. The curves show a fairly high accuracy of the formula. given

in Table 5-1.

A comparison of of tor laminar and turbulent layers shows that with an identical

value Re.a 4 * 1040 coefficient Ofturb doubly exceeds crem (Ofturb-, 0.0054; eflamr

0,0022). With an increase in ReX the difference afturb- afl sharply inoroaoeS.

It follows from this that in the continuous flow around a body, it is necessary

to strive to tightening of lazinar section of layer, i.e.9to displacemsnt of

region of transition in direction of the flow.

The detected difference in resistances to friction during laminar and turbulent

modes is explained by different mechanism of friction in any one came. If in a

laminar mode, the resistance is caused by skin friction between layers of liquid

(Ocxing of maoroparticlem--moleeuleso), then in a turbulent mode there take place

intense transverse dislocations of micropartiolas. It is obvious that mixing of

Sthese particles is associated with the lose of large amount of momentums i.e.swith

manifostation of substantial forces of friction in the flow.

Mumerous experiments in accordance wth conclusions of the semiempirical

theory indicate still one essential difference in properties of laminar and

turbulent boundary layers. The point of separation of laminar layer at large Re

wnumbers oucupier &a 'Ixed position on a streamlined surface. The point of separation

c f turbulent layer W-.th an identical distribution of parameters of external flow

i situated beyond tb, point of separation in a laminar layer. In other words,

turbulent layer is detached later than the laminar. This knooms understood from

a consideration of profilis of speed during any one mode of the layer: the kinetic

energy of the particlea moving near wall during turblulent mode is significantly

greatr than during a laminar mode.

In those coaes, when on streamlined surfaces there exists a mixed boundary

* layer, It is necessary to eumimurize the resistance in laminar and turbulent sectors.

2 5



ar s'ov* d0" o used pioaadwe of OaloulAtion does inot conhider the influenoc

of iv Jal tu3vbulence of flow R ar small degrees uf turbulence, the equation of'

*omentu of boundary layer for inomnpreosiblo flMAd was obtained by V. A.

VrublivskaTya in suoh a form:
a N*

Here *i- , is the averaged v&4Q of speed of evternal flow; s" is the

nomentu thickness of lose calculated on the basic of &aVroged speeds.

The graphical solution of equation (5.77) for a flow without gradient is

shown in logarithmic ooordates in Fig. 5-24. 11ore there are plotted the

experimental points, relating to the experiment im flat wal conducted at MosCoW

Institute of Power Engineering (MX). Graphs in Fig. 5-24 clearly, show the Wnfluenoe

Io an losses in boundary layer; thus at Rex - 2 . 106 the iorease I. from 0 to

5 inoreases the Rs*N number and consequently, the magnitude or frictional losses

hn the trrube 70b d

layer."
8 Of

Fig. 5-24. Influence of degree of turbulen* anthe scontum, thloknesi in the turbulent, boundary

•s~r~mnti! D~tA

t shnll analyse cartalm results of an experimental investigation of a turbulent

bourdary layer during high subsonio speeds in a flow without gradient and sub-

critioal speeds (it <).
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In fig. 5-25 are given six profiles of speeds, obtained with a constant Re

number equal to 2.5 , 106, and a variable 1 number. All the experimental points

-in the interval N - 0.31 to 0.98 wl1 form one curve, which can be presented by a

dependence of the form: (-8

Consequently•, with a sero pressure gradient with'a variation in H number the

profiles of speed in coordinates yj vary similarly. In addition, in the indicated

ranges of changes in M number the thickness of the boundary layer at constant Re

number changes insignificantly; therefore, it in possible to speak not only about

the similarity, but also about identity of profiles of speed. Hence, it may be

concluded, that the influence of compressibility at M< ldirectly on profile of

speed in boundary layer is reflected insignificantly. Thus, as a first approxima-

tion profile of speed atM>O0it can be presented by the ordinary power formula

.(5-62).

Formula (5-62), of course, is tot the only one. Any dependence, satisfactorily

approximating the profile of ape d in boundary layer of an incompressible fluid,

can be extended to the flow Of a/ compressible fluid. Limits of such extrapolation

are not confined, apparently, by sonic speed and can be extended to supersonic

speeds.

A subsequent processing of profiles of speed gives poseibility of calculating

the value of integral thicknesses a*, 4 ** and to construct curves of their change

'depending upon 4 number (Fig. 5-26). The dispersion of experimental points in the

range of transonic speeds is explained by generation of a nozsle flow. Curves

for transonic speeds were drawn through points,, obtained with a minimum pressure

gradient; therefore, in the range of sonic and supersonic speeds, main mass of

points in located under tho curves. The scattering points, detected in the area of

subsonic speeds, is explained by the fact that here there have been plotted points,

rolating to different Re numbers.

.2.47
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The obtained picture is in full

Sagreement with theoretical results. An

increase in M number results in a drop in

01e - - the momentum thickness and to an increase
* M=OJ10 *

0. , in thickness of displacement 8'*. Such
S0,511 -- ' behavior to the curves with identical

* 0.500 t
_ - L 0,588 _--_.' profiles of speed is caused'by change in

41- density across boundary layer, in which

an opposite influence of this change on

-- the thicknesses 8' and 8" is explained

""- - by the fact that subintegral functions by

- - which thicknesses 8'% a", are expressed,

- react differently on a change of density.

41 For approximate quantitative evalu-

0 ""A / ation of the influence of compressibility
on the momentum, thickness A" in Fig.

Fig. 5-25. Influence of M number 5-26, the change of relative thickness
on profile of speed in turbulent
boundary layer. $05" depending upon M with zero

pressure gradient is given. In approaching a sonic speed, the decrease in momentum

thickness amounts to about 15%.

The independence of profile of speed on M number gives the basis for consider-

ing Re number as basic parameter, determining profile of speed in absence of pressure

gradient, and to extend the results of numberous experiments in detormining its

influence in an incompressible fluid to the flow of a compressible fluid.

In Fig. 5-27 there are given six profiles of speeds, obtained with variution

:r Re number and a constant M number. An increase in Re number from 0.61 • 106 to

1.0S 106 results in a characteristic change of profile of speed. A subsequent

increase in Re number does not cause a marked change in profile of speed. In other O
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Fig. 5-26. Influence of X number on the momentum thickness.

words, starting from magnitude ReslO , profiles of speed can be expressed by a

general relationship.

R - 10 Investigation of influence of Re• 1.08-191 lk

,,* ' number on integral -ýhickW3cn eso 8 and 8s

S , • Rc"' , :showed that with an increase in Re, as well

47 as in case of an incompressible fluid,

- -. these magnitudes decrease. in the range

S..... ,55_ •of small Re values the change .3 r6 a" is

-- I- found to be fairly marked. With an increase

in Re number a decrease of thickness a"

"61 occurs less intensively. Analogously also

0,2_- a-- - the displacement thicknosses vary.

....... Thus, the influence of Re number at

* "' r /auo high speeds ozu turbulent boundary layer
41 46 a,? 0.8 0.0 40

Fig. 5-27. Influence of Re number from the qualitative side proves to be of
on profile of speed in turbulent
boundar, latar. the same order as in the flows of ar incom-

pressible fluid.

For investigation of question on influence of M number in the presence of a

pres',"re gradient profiles of speed in diffuser region (Fig. 5-28,a) and in the

nosJo flow (Fig. 5-28b) were plotted. As can be seen from given curves, all

0 exper.nIrtdai points iidependently of H number will form ;)mctijally one curve. This
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fact once again confirms the earlier =ad conclusion about the fact that at sub-

sonic speods change in M number does not result in marked changes of profiles of

speed, Consequently, main factor, determining flow in boundary layer of compressible

fluid, in the longitudinal pressure gradient.

Results of investigation show that the influence of compressibility on the

structure of turbulent boundary LTer is indirect. With a change oa" M number the

distribution of pressures along streamlined surface varies. With an increase of H

number the absolute values of pressure gradient increases. In accordance with this
.0 . . -. - -

-A --

4' -... ... -
13 581/a/ /Z 1-Y /4/5j /S MAY 4 4

Number of points O i - - , -
,', ,-1 .. . . . . . ... . . - -

S 457 20 Number of pints/ 0,584o I. pfM"--i -

48 - 0, . 0.9 - 0,810--0

---,-- ,- - --- "--4

47 - 7S. ... .• -. - -.- a s 7
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IMI

40,

43a ,0.4 445 0. W754.4V 4 p
Fig. 5-28. Influence of M number on profile of speed
in a turbulent boundary layer.
a-profile of speed in diffuser region, Re - 1.5 • 10.;
b-profile of speed in nozsle region. Re - 2 • 10.
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main characteristics of layer vary. In a nozzle flow 8*' decreases, but in

diffuser--increases.

The change in longitudinal pressure gradient from a positive to a negative

value results in a substantial deformation of profiles of speed. This is very

evident in Fig. 5-29, where there are illustrated speed profiles, obtained in diffuser

channel with different pressure gradients.

In Fig. 5-30 the curve of the change of the momentum thickness, as a function

of parameter r, obtained from an experiment is given. In order to exclude in-

fluence of compressibilits, the thickness a"' was related to a corresponding thick-

ness for a flow without gradient with the same speed of external flow. All

"1...- - - r- -

0 41 411 V 4 4 41f AS 4 7 43 ap /.Cc

hlS. 5-2..9 Profiles of speed in
diffuser with different pressure
gradie.nts.

1-, ttt.061 mam; 3 1.095 mam; X = 0.960: H 2.4; Ho -1.65;
2.- S 0.5 52 mm; 6 0. 765 mam; M =0. 548; H = 1 -57; OHo-1 -

A :3- 0:. o.384. am; * 0.: o52 mm; M,= 0o.54;i H .= :52; Ho,. 1&.•
4,- J 0o.37 m * 0. o68 mm;, M- 0.f985; - - 2.29 H 1. 7
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points are grouped around one zurve.

From the curve it follows that in the given case a ** is a funotion of the

one parameter I'. Consequent4y, when distribution cf speed at outer limit of bound-

ary layer is nearly linear, calculation on basis of one-parameter mnthod is physically

well-based. The lack of experimental data, ref3rig Lo other 'vauea of second deriva-

tive, makes it impossible to make more general conclusions.

Zxperimental data, characterizing the .nfluenc3 of initial turbulence on the

structure of boundary layer are shown in Fig. 5-.31. With a&A increese in F. fullness

of profile of speed increases. However, filling in of t.he vr!file dopends consider-

ably on sign and magnitude of gradient of speed of external flow. The miaximu

influence Eo is shown to be in diffuser flow which the graphs of change Th along

flat wall with different pressure gradients (Fig. 3-32) onrroborate. Least

sensitive to a change in So is the nossle flow (' <0).

040

Fig. 5-30. Dependence of relative momenti thicknems

on the parameter r.

With an increase of Reynolds number, the influence of o 0'tcreases (Fig.

5-32). An analogous result is obtained ailo with different H numbers; with an

increase in H the divergence of curves decreases, especially at M, close to unity.

We note that in connection with increasing filling-in of profile of speed in

the layer, the parameter H markedly lowers with an increase In the degree of
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Fig. 5-31. Influence of initial turbulence

&--on profiles of speed in a turbulent bound-
ary layeTr; b--on the momentum thickness with
different pressure gradients.

turbulence; dependin upon sign of longitudinal pressure gradient, this lowerin

amounts to 15-20%.

• .1poilly great in the influence of initial turbulence with a detached flow

around & surface. In this case the increase in So results in a sharp displao~sment

?f point of separation along flow and to an improvoment of flow around a surface.

The given data indicates that In calculation of the turbulent boundary ';ayor,

2053
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Fig. 5-32. Infl.uence of initial
turbulence on the momentum thick-
nnes wiLth a gradient flow.

it is necessary to consider the influence of initial turbulence. The marked

divergences between experimental and calculated [by formula (5-70)] values of I*

are marked at E, ' 3l..

Let us analyze certain properties of boundary layer at transonic speeds.*

Xf speed of oncoming flow, H M is greater than the critical value #

then along surface of streamlned body there will be formed range of supersonic

speeds.

The range of supersonic speeds has a limited extent in direction, normal to

the streamlined surface. In the direction of flow (along streamlined surface) the

region of supersonic speeds also is limited. This conclusion is readily reached by

remembering that at a certain distance after the body speed should be subsonic,

since speed of an undisturbed flow (before body) in subsonic.

Thus, the sones of supersonic speeds, occuring at M,,>M., have a local char-

actor. In the local supersonic range, the flow of gas at first is accelerated, but

later is stagnated. However, stagnation of supersonic flow, as a rule, occurs with

the formation of a shock. Owing to the large accelerations in none of supersonic

*The considered questions here of flow around bodies at transonic speeds in
partially discussed in Chapter 3.
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NV 'shook

Fig. 5-33. Schematic diagram the formation

of shock wave in a local supersonic sone.

speeds the gas is found to be greatly overexpanded, that is, its pressure falls

4i4lificantly 6elow pressure Of external (1±d.' This overexpansion of supersonic

flow is extinguished by a shock wave.

As already indicated above, speeds at a distance from body vary in magnitude

and direction (disturbance of flow in direction from body decreases). Owing to

this, the forming shook waves will be ourved with varying intensity along line of

shook: behind the shock the flow becomes vortical. The forming shook waves enclose

the region of supersonic speeds. Its fore limit is line of the transition (line

M k-l). For an ideal fluid, surface of streamlined body (Fig. 5-33) serves as the

enclosing surface. I

I "

Fig. 5-34. Diagram of interaction between

a normal shock and the boundary layer.
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In the real case of a viscous gas, the location and extent of local super-

sonic mono, and also structure of the shock change. The mechanism of interaction

of shocks with boundary layer constitutes an important part of problem of resistance

of-bodies at transonic speeds.

Shock waves in a local supersonic sone create large pressure gradients which

are propagated into the region of boundary layer. The disturbances, appearing in

boundary layer, are Propagated against the flow and also along the flow; they also

exert an influence on field of flow along the streamlined surface.

We now consider at first simplest case, when in supersonic zone there will

be formed one normal shock* (Fig, 5-34). In boundary layer the speeds vary from

zero at wall to a supersonic value in external flow. Consequently, within the limits

of layer there is located a line of transition (1 - 1), which divides region of

boundary layer into subsonic and supersonic parts. We note that in a turbulent

boundary layer the subsonic part has a relatively smaller thickness, than in a

laminar boundary layer. It is obvious that an increase of pressure is propreated

through subsonic part of layer to meet the flow.

An increase of pressures in zone of shock may result in the generation of a

separation. During a turbulent mode the intensity of shock, causing a separation,

must be higher, since, as it was pointed out above, a turbulent layer always is

detached later. We note that since in subsonic part of layer an increase in pres-

sure is propagated against the flow, then point of separation, as a rule, is located

ahead of the shock.

Since the intensity of shock in direction from wall varies (in accordance with

change of speeds), then in the boundary layer there will form a transverse pressrue

gradient and basic condition, assumed in calculating the layer (2--0), in the

region of shock is not observed. The disturbance propagating in subsonic part of

*As was shown in Chapter 4, in a nonuniform supersonic flow, the shock is
curved. Therefore, the scheme under analysis is only a first, approximation.
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layer, results in the disturbance of this conditJlon also ahead of the shook.

Hence, we conclude that the mode of flow in a boundary layer must exert a

great influence on the location of a shock in a local supersonic sons, and on the

structure and intensity of a shook. This influence is explained by difference in

velocity profile of laminar and turbulent layers. One should, however, consider

that distribution of speeds in boundary layer depends not only, on the mode of flow,

but alao on character of change of riwed of external flow, and consequently, on

curvature of streamlined surface.

Experimental investigations confirm the generation of structurally different

shocks in laminar and turbulent boundary layers (Fg, 5-35).

In a laminar layer, local shocks have, as a rule, t %-shaped form; such A

shook consists of an oblique curved shock, merging with a more powerful and more

extensive shock of small curvature, enclosing the supersonic sone. The ocourr'ence

of a curved shock can be explained as follows. The increase in pressure, by being

propagated to the subsonic parts of layer, causes a marked increase in itt thickness

before the shock. The lines of flow in the boundary layer are deflected from sur-

face of body; as a result, there appears a system of weak waves of compression,

which also will form an oblique shock. With an increase in Re number (at M17const)

on basis of degree of equalising fielA of speeds in boundary layer, the curvature

of the lines of flow before shook decreases and in a developed turbulent velocity

profile the first shock disappears; there remains one, but a more powerful shock of

small curvature.

The separation of flow in a local supersonic sons does not occur in all cases..

Sometimes depending upon distribution of speed in external flow, the separation his

a local character and at a certain distance behind the shocks there is restored a

normal flow around the surface by the subsonic flow. In the diffuser flow after

* the shocks the separation usually develops and proceeds to the root region after

the body.
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Fig, 5-35. Diagram of shocks (a) and opectrum of
flow (b) in a local supersonic sonm in laminar and
turbulent modes of a boundary layer.
KSY: (a) laminar layer; (b) Turbulent layer

In Fig. 5-36 there is presented a diagram showing the formation of separation

in a supersonic region. Point of tranoition from a laminar layer to turbulent

(point T), as a rule, is located close to the point of separation s.

We now turn to a brief oonsideration of the diagram of interaction between

boundary layer during supersonic speeds and wavs of rarefaction and shock waves.

Since in a real supersonic flow there always will form shook waves and waves of

rarefaction, then one of important problems in the theory of boundary layer at h|.,> I

is the study of interaction of shocks and waves with the boundary layer. Experimental

data make it possible to conclude that conditions of interaction of snook with

boundary lLyer can be different depending upon intensity of shock, the distribution

of speeds or dxternal flow and mode of flow in layer.

0
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Diap&raz illustrating principles of

the interaction of @hooks and waves of

rarefaction with boundary layer are shown

in Fie. 5-37. With a lou intensity of

Sshook (Fig. 5-37,a) before it close to
point of its f*0L, there occurs a "sw3lling"

S"- of the lar.

....... A a result, before Yhe shock there

will form a system of weak waves of corn-
Fig. 5-36. Schemu'Vic diagram of
separation of boundary layer before pression, creating the reflected shook CD.
shook wave.

The flow around the thickened subsonic

pat, of layer is accompanied by the formaticn of a weak wave of rarefaction and a

second reflocteod shock PS. With a significant intensity of the lowgring shook

(Fig. 5-37,b) the increase of pressures before shook near point of lowering may re-

e sult in a separation of the flow.

In the fall of a wave of rarefaction, to the wall, the thilckess of the

boundary layer before the wave Way diminish.

Thus, we see that actual diagram of the reflection of shocks and waves of

rarefaction from a wall, by a streamlined viscous fluid, differs considerably

from the diagrams, considered in Chapters 3 and 4, for an ideal fluid. The main

distinction consists in the fact that the shocks (waves of rarefaction) through

subsonic part of layer, change the field of flow before puint of fall, and the

simultaneously deformed boundary layer createo new wave formations. However, main

property of a rigid wall, reflecting the shook (waves) with the sawe sign, is

maintained also in a viscous flow.

0
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Fig. 5-37. Diagram. illustrating
interaction of shocks with bound-
ary layer at supersonic speeds.

5-13. Resistance of Bodies at Subsonic and
Supersonic Speeds

Pressure and tangential frictional forces act on streamlined body flowed around

by a gas. The resultant of these forces is the total aerodynamic force. In study-

ing a two-dimensional flow around conventionally the aerodynamic force in represented

by two components: Px and Py (Fig. 5-38). As is known*, the component PxO whose

direction coincides with direction of speed of incident flow is called the force of

dr.., and the component Py, normal to vector of speed of incident flow arbitrarily

is called the lfting force or the Zhukovskiy force.

In bearing in mind origin of force Px drag is subdivided into frictional

resistance and resistance of pressm-e. Such a division, in spite of a certain

*Sao Chapters 3 and 5.



Fig. 5-38. Foroess acting on streamlined
body.

WT (a) Boundary layer; (b) Vortex trace

conventionality, is practically very convenient in calculating the resistance.

A body, placed in a flow, creates a disturbance, as a result of which in

the region, adjacent to body parbaeters of the flow vary. The distribution of the

pressures along the surfaced of the body depends on its shape and orientation in

the flow and also on the speed of the undisturbed flow. The distribution of

frictional forces along the body svirface also depends on these factors.

The distribution of pressures along surface of body is characterized by the

pressure coefficient. We now consider the distribution of pressures along wing

profiles of different shape at different small angles of attack (Fig. 5-39) for low

speeds.* On upper and lower surfaces near top of profile there occurs an intense

acceleration of flow with a corresponding lowering of pressure. These sectors of

the profile are the nozzle sector's. The lowering of pressure on upper surface of

profile occurs more intensively than on the lower. Behind points of minimum on

lower and upper surfaces flow is decelerated. This region of flow along wing is the

diffuser sector. We note that the diffuser sector on upper surface is characterized

by higher values of the pressure gradient. On trailJAg edge of profile whexe there

*Usually the distribution of pressures is conventionally constructed on basis
of the profile chord in which the negative values of pressura coefficient (rare-
*facaion) are plotted upwards, and the positive--downwards.
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Fig. 5-39. Distribution of pressures along two pro-
files of varying thickness at different angles of
attaok for io•i subsonic speeds, o--a~ngle of attack;
.,i--oefficien.t of lifting force.

occurs a merging of the flows, streaming off from utpper and lower surfaces of

profile, total pressur~e is not restored, since in boundary layer irrevereiblo

louses take place (Fig. O.38).
At angle of incidence ithe picture of pressures in the profile varies consider-

ably. Significant difffeser sectors appear on lower surface along f ha tip.

c wr have seen, daing descent from traoimng edge of profilo there will be

formed a vortex wake, pasurated with vortices, generating in the boundary layer.

The structure of a vortex wake varies ith distance from the profile. Vo5tces3,
S generating in the boundary layer, are developed in the separation from profile and

then at a significant difsternce after the body die out as e a'sult of the interaction

iAth external flow. At the same time the energy of valintlcos will be transforled

into heat. Vortex formation results in a lowering of pre(surM in the region of

trailing edge and beyond the profile in trace.

With a known distribution of pressure along contour of wing there cai' be
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found the projection of forces of pressure onto the sense of a vector of speed

C."

It is readily seen that

p--P, cos (xn) ds,

P, a

where do is an element of profile surface.

The force P , caused by difference of pressures at points of streamlined body

and directed against its motion, is the resistance force of the ,ressures. In

addition to the force P. the resultant of tangential forces of friction P't acts

on the profile.

Thus, the total drag of bodi in a plane flow is sum of resistance of pressure

and resistance of friction:

It must be especially emphasized that the resistance of pressure and resistance

of friction have one and the uame cause viz.-the viscosity of the fluid. The

* profile drag is Jefined as the resistaice of a clirndrica! wing during its continuous

flow around by an infinite two-dimensional flow.

For evaluating the force of interaction between the flow and streamlined body

there are introduced dJmunsiorless coefficients of forces, which are called

aerodynamic coefficients.

Thus, resistance of body is characterized by t]e drag coefficient

i2P 2P,

where F is the characteristic area* of the body;

Pw is the static plessure of undisturbed flow.

The coefficient of the lifting force by analogy is the magnitude

2 ?P V _____I

*In formulas for "x and c of wing profiles there is introduced the wi .g area,
equal to the pr iduct of chord o. profile and the length of wing.
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As has already bmee indicated, the forces, acting on streamlined body, and

consequent7y, and aerodynamic coefficients ax and Cy depend on the shape of the bodyý,

the mode of its flow around and orientation of body in the flow. During low speeds,

when compressibility is virtually inevident, the shape of the body, angle of in-

cidence and Re number exert the chief influences on the drag coefficient. The

existence of such dependonce, corroborated by numerous experiments ensues from the

physical nature of resistance of pressure and resistance of friction.

Actually, depending upon shape of body the character of the disturbance,

created by body in the flow varies. In this connection, the distribution of para-

meters of the flow along the contour of the body and, consequently, both 9lcmponents

of the force Px vary. The resistance of friction varies in connection with change

of structure of bounda-r layer and mode of flow in it.

An analogous reconstruction of spectrm of flow around occurs with a change

of orientation af body in the flow. In this case in exactly the same way-the total

resistance of the body and its component vary. Hence, also it follows that in a

complete equilibrium of resistances of body, the specific effeit of the resistance

of pressure and resistance of friction may vary depending upon the indicated para-

meters. Thus, profiles of a well streamlined shape at low speeds have a comparative-

ly small profile drag, in which resistance of friction is fundamental. With an

increase of the relative thickness of profile and angle of attack, the role of

resistance of pressure increases. The resistance of friction at first varies little,

but later diminishes. Just like the total force of drag so can the coefficient of

resistance be presented in the form of two components:

where c., is the drag coefficient of pressure;

C,,p In the drag coefficient of friction.

With an increase of thickness of profile the positive pressure gradients in

the root portion of profile increase and point of separation is displaced against

AI



flow. For this reason resistance of pressure increases. Since in this connection

the magnitude of surface of friction is reduced, then c,,, diminishes.

With an increase in Re. number for a well streamlined profile, c,, insign-

ificantly diminishes, since the thickness of the boundary layer and zone of separaticn

decrease. At the same time, with an increase of Re., also the coefficient of

friction decreases (Sea preceding paragraphs). In evaluating the influence of the

shape of body and Re, number sometimes it must be assumed that boundary layer

exerts an influence on the external flow: The lines of flow in the external flow

are displaced by the boundary layer. A detailed investigation make it possible to

establish that distribution of pressures along contour of profile in the flow of a

viscous fluid coincides with distribution of pressures along contour around a cor-

tain fictitious body (obtained from profile by means of thickening it by the

magnitude of thickness of displacement 8 *), flowed around by an ideal fluid. It

follows from this that the structure of boundary layer is determined by the external

flow, but on the other hand, boundary layer can exert an opposite effect on the

external flow. We note the opposite effect of the layer is found to be especi Il•

great along the trailing edge of profile, where the thickness of layer has a taxi-

mum value. The thickness and distribution of speeds in boundaz7 layer along trail-

ing edge to a significant degree exert an influence on the profile drag.

The Re. number exerts an influence on the separation of the flow, which nrAy

manifest itself with large angles of attack, when positive pressure gradients in

diffuser regions attain large values. An increase in the Re,, number, which results

in the turbulization of the layer, may sharply decrease the coefficient of profile

resistance at a large angle of attack, since the separation is displaced towvards

trailing edge of profile and the resistance of pressure lowers. An increase in

Re,, number during a mixed continuous flow around displaces the region of trunsition

against flow and may result in an increase in the frictional resistance.

At large M. values of the incident flow, compressibility exerts an in luence
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on profile resistance. During continuous flow around slender bodies of a well

streamlined shape the point of transition is displaced along the flow and the

drag coefficient decreases somewhat. With the occurrence of a separation along con-

tour of body an increase in M. displaces the point of separation against the flow,

by which the streamlining of body deteriorates. It should be noted that, besides

this, with an increase of M. the intensity of the vortex motion in tho wake of

the body increases.

A marked increase of drag coefficient is detected at transonic speeds. In

this case, drag coefficient as a function of M number sharply increases and depend-

ing on the shape of body can bY several times exceed t~he value of c. at M..<M. pro-

viously it was shown that shocks frequently result in a separation of the flow

which causes even a sharper increase in the resistance.

The character of distribution of pressures about the profile at transonic

speeds can be seen in Fig. 5-40,a (zone of supersonic speeds is shaded). Here

there are clearly noted the Places of location of shocks and increase of pressures

in the shocks. In Fig. 5-40,b the curve of coefficients of profile resistance in

,this sone of speeds for a wing profile is presented.

The above mentioned peculiarity of flow around bodies at transonic speeds

characterize specific effect of compressibility. The discussion above shows that

an Licrease of the coefficient of profile resistance at M.> M. is explained by an

increase in the resistance of pressure. In a well-developed system of shocks on the

profile and in separation of flow, the contribution of resistance of friction is

small and its change cannot be explainod by such a significant increase in cx . We

note that at Ai.>M. there can occur a sharp decrease in coefficiant of lifting

force cy ; a change in c. also is stipulated by the redis~xibution of pressmes

along the profile and proceeds usually at larger M.., numbers than those, at

which an increase in ex is noted..

The manifestation of sonic speeds at points of the profile can be established
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Fig. 5-40. Distribution of pressures along profile at transonic
speeds a) and drag coefficients of profile depending upon hl

number b).
KEY: (a) Supersonic speeds;(b) Shock;(c) Shocks;(d) Upper;(e) Lower.
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by the picture of distribution of pressures. The pressure coefficient at these

points acquires a value, which is determined by formula (3-17).

From the preceding it follows that the M value depends not only on shape of

the body, but also on the orientation of body in the flow, i.e., on angle of

attack.

At supersonic speeds of incident flow resistance of pressure basically is

determined by the wave resistance. The location and intensity of shocks and waves

of rarefaction depend on the shape of the streamlined body, location'of body in

flow and the *M.. number.

We now, consider the flow around a diamond-shaped profile at M.> 1. (Fig. 5-41).

By knowing the geometric dimensions of profile, by using formulas, given in

Chapters 3 and 4, it is possible by a calculation method to construct a picture

of flow around such a profile: to find the angles and intensity of the forward

and tail shocks ABC and A B C and waves of rarefaction DEF and DIEIF , Then, we

will determine pressure in regions II and III. By finding projection of resultant

force on direction of nonperturbed flow, we are certain of the eastence of a

resistance force caused by the change of pressures in shocks and waves of rarefaction.

We note that in distinction from subsonic speeds this portion of resistance of

pressure at transonic and supersonic speeds (wave resistance) is separated into an

independent category. Coefficient of profile resistance is presented in such a

form: es + 0, ay
friet

where is the coefficient of wave resistance of the body.

AU' P4A

Fig. 5-41. Spectrum of flow around a diamond-
shaped profile by a flow of supersonic speeds.
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5-14. Resistance of Poorly Streamlined Bodies
In a Flow of Gas

S Bodies which in any position are flowed around with a separation of flow are

called poorly streamlined. For poorly streamlined bodies even at low speeds, a

significant part of total resistance is the resistance of pressure.

Specific peculiarities of spectrum of a separation flow around can be traced

in the example of a sphere or a cylinder.

In Fig. 5-42 distribution curves of pressures along the sphere contour at Mao

(incompressible fluid) for different Reynolds numbers are presented. In sector

from the forward point up to point M, pressure along contour of sphere sharply

diminishes (nozzle region), and then after frontal section is observed an increase

in pressure (diffuser region). At a certain point S there occurs a separation of

the layer; beyond line of separation the pressure varies slightly.

to -` - -

• " \1-
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Fig. 5-42. Distributior. of pressures along
contour of sphere at different Reynolds numbers.
I--Re - 157,200; Cx W- 0.471; If--Re - 251,300;
eo- 0.313; IIl--Re 9 298,500; ec - 0.151; IV
-% - 424,500; c. 0.143.

At considered speeds (A1O) a eignificant influence on distribution of



pressures is exerted by the Reynolds number. It is possible to note that with

mn increase of Re,, pressure at point M decreases, but at point S--increases.

Characteristic also in the displacement of points M and S along the flow.

Numerous experiments confirm the existence of dependence of drag coefficient

of sphere (cylinder) on Re• number. In Fig. 5-43 corresponding graphs are given.

Here, there can be noted five characteristic regions of the variation of ox, At

ReK2 • 103 to 3 - 103 c. decreases* with an increase of Re. and especiallyv in-

tensively in zone of small Re.<100., In the sector Re,, 2 • 103 to 2 1 l0A, drag

coefficient increases somewhat (region III), but then in the interval Re, , 2 * lO4 to

2 - 105 ax is maintained constant (region IV). After this in a narrow range of

variations of Re. - 2 • 105 to 4 • lO5 (4#.5 105)c, it decreases in the form of

a depression (region V). At Rea,>4.5 . lO5 there is noted a certain increase of

C., after which ca acquires virtually a constant value.

Experiments show that the transition from one region to another is accompanied

by change in spectrum of flow around sphere (Fig. 5-43). At small Rc<wIO0 the

chief role is played by resistance of friction, in which a sharp decrease in c. with

an increase of the Reynolds number in this region corroborates the lack of a quad-

ratic dependence between resistance force and the speed c,. The formation of

separation In the afterbody causes further gradual drop in ca with an increase of

Re.. . Region III is characterized by a slight increase of cx, which is explained by

intensification of vortex motion in afterbody. In this region resis tance of friction

in boundary layer is small. The resistance of pressure plays major role.

Here, as well as in the region IV, on line of separation, the layer is laminar.

As is known, the position of point of separation of laminar layer doos not depend

on the Reynolds number,, Consequently, at a certain value R 105 to 2 l 104, line

of separation occupies a fixed position on surface of sphere (cylinder) and a further

*Upper limit Re < 3 • 103 corresponds to a sphere, and the lower Re -. 2 - 10• to
a cylinder.
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increase in Ra. does hot result in a change in position of the line S.

Region IV, the corresponding constant value of cx is called the region of auto-.

modelling on basis of Reynolds number. However, also in this interval of variations

of Re,, there occurs a reconstruction of spectrum of flow around sphere. The laminar

layer separating at point S is made turbulent at a certain point T on the boundary

of sone of separation. With an increase in Re., number line of transition T is dis-

placed towards line of separation S, since in this connection the turbulence in

afterbody vortex region is increased.

In attaining a certain critical Reynolds number Recr, 3 . 105 to 4 * l10,

point of transition coincides with point of separation. Consequently, at point of

separation the layer is turbulent, and possesses great resistivity to separation.

A 4

Fig. 5-44. Change of critical Reynolds
number Recr depending upon degree of
turbulence So for M=-_O.

As a result of change of mode in motion in layer near separation, the point S

abruptly is displaced along flow and the flow around sphere is improved critically:

the drag coefficient decreases by 2 to 4 times (region V in Fig. 5-43). The decrease

in ex occurs owing to lowering of resistance of pressure, since resistance of

friction in turbulent layer is greater than in laminar. This phenomenon is called

the critical region of Reynocldi number of poorly streamlined bodies.

The position of line of transition T at Re=<Recr depends on degree of

turbulence of incident flow. Therefore, also critical Rear number varies considerably
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depending upon Eo. The corresponding experimental curve is shown in Fig. 5-44.

With an increase of turbulence to E o 3% critical number Recr decreases almost

3.5 times.

Curve in Fig. 5-44 can be used for determining degree of turbulence of incident

flow on basis of critical Rear number. In this respect, the value Rew, corre-

sponding to drag coefficient of sphere cx - 0.3 (Fig. 5-43) is considered as the

critical Reor number.

One should note that at Re >Re (region VI in Fig. 5-43) drag coefficient

at first increases somewhat and later virtually is independent of Re: this zone

is second region of auto-modeling, corresponding to the fixed position of point

of separation of turbulent layer.

Thus, on surface of sphere there are three characteristic points: minimum

of pressure (H), separation (S) and transition (T), in which turbulimation of layer

occurs. Mutual location of points M, S and T exerts a decisive influence on mech-

anism of flow around and resistance of sphere at low speeds.

A study of influence of compressibility on the position of indicated points

makes it possible to evaluate change of spectrum of flow around and resistance of

sphere during transition to large M. numbers.

Experiments show that as the Al. number increases the picture of distribution

of pressures along contour of sphere varies (Fig. 5-45). Importan! is the fact

that at M.> Mf> 0.3 with an increase n M" 1 pressure in afterbody behind sphere

lowers.

At Mo,>AMon surface of sphere there will form annular zones of supersonic

speeds, which are enclosed by shock waves. The corresponding spectra of flow

around are shown in Fig. 5-46. Influence of ReW. number on these modes lowers,

however, it remains significant. Only at Ml >0.8, influence of Re., virtzilly is

noL observed. In the. ,>M.the pressure in afterbody continues to lower and will

attain minimum values at 1.1 'M. 0.8 (Fig. 5-45).
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For high subsonic speeds, characteristic are the sharp reduction of diffuser

region and the decrease pressure gradients in It. At these speeds, the separation

occurs in the zone of location of local shock waves (Fig. 5-46) independekitly of

the mode of flow in boundary layer-laminar or turbulent.

- -2 1-
S° ,

• \\ \\N0, R ,-2/OI

.,, \.. /____,)

Fig. 5-45. Distribution of pressures along
contour of sphere at different Mý numbers.
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Fig. 5-46. 3pectra of flow around a sphere
at transonic and suporsonic speeds.

1.21; b-- S; c-- 3 3.0.
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At high supersonic speeds(M.>l.5) pressure curves have a different character:

the pressure at minimum points continues to increase and the diffuser sector is

displaced along flow. The pressure in afterbody of sphere increases with an1

increase of speed.,

Graphs of the pressures can be used for an approximate determination or-

characteristic lines of the surface of the sphere. Corresponding curves (A

0d •L0

4 a 0.8 its to 48a 4-., zoI,",-i•a 't Air~o

Fig. 5-47. Change of position of lines of pressure minimum
and separation depending on M. number for a sphere. Change
of pressure in afterbody of sphere depending on hi, (experi-
ment of author).

and @ are shown in Fig. 5-47. Hoers it in possible to see that in the speed range

h%,- 0.3 to 1.1 there takes place a significant dislocation of line of separatiou,

and besides independently of character of flow around sphere at Moo M 0.2 the

values §M and 1, decrease,, i.e.jline of separation is displaced against the flow and

flow around the sphere deteriorates.

Consequently, both for Re.< Reor, and aleo for Re,>Reor. the influence

of compressibility at ML< I is found to be qualitatively identical. With an in-

rease in K, , the flow around a sphere approaches those conditions, which correspond

to a separation of a laminar layer. In the region of supersonic speeds, angle of

separation I, increases with an increase of M, number and the flow around of sphere

improves (Fig. 5-47). Intensity of displacement of line of separation lowers at
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M,,>2. In such flow modes before sphere there will form a curved shock wave

(Fig. 5-46); at points of separation weak conical shocks generate.

Thus, in the subsonic region with an increase of MVnumber, line of separation

is displaced towards fore critical point and at Man = 0.95 to 1.0 it occupies a

position nearest to it, but at supersonic speeds the separation is displaced in

direction towards afterbody. Hence, it may be concluded, that at subsonic speeds

with an increase of M,, the streamlining of sphere deteriorates and at supersonic

speeds-improves.

The discussion above shows that at speeds of M4'M. the position of

lines of separation on sphere depends considerably on mode of flow in boundary

layer and, consequently, on Re. Influence of compressibility here is reflected in

the fact that with an increase of MZ critical Reor number increases (Fig. 5-47).

This means that turbulizatton of layer at point of separation occurs at large Re

numbers and line of transition T, approaches line of peparation S, more gradually.

In other words, the compressibility delays the transition of a laminar into a

turbulent mode of flow.

At 1> M,> M in investigated range of Re,, numbers the critical change of

picture of flow around, associated with turbuliuation of layer, in general, is not

detected and beyond depenidence of Re, , streamlining of sphere sharply deteriorates.

Hence, it may be concluded, that at transonic speeds shocks result in a separation

of the laminar layer approximately in one and the same section.

Influence of number M. on drag coefficient of sphere cx can be evaluated by

curves in Fig. 5-48. With an increase M,,<M., cX innreases, in which in a, pro-drag

stall flow around (Re,< Reor, curve 1) drag coefficients increase less -Intensively,

than in a post-drag stall flow around (Re,> Reer, curve 2). At M. > M influence of

Re,. on c. weakens and for M- 0.8 curves of c. for different Re. virtually

joincide.

The total drag coefficient of sphere can be presented in the form:

ex = C,~+ C,3 OP
2 71
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where cXr is the coefficient of the head drag;

CE OP is the coefficient, of afterbody effect.

In Fig. 5-48 in addition there are presented the curves -C,,o -=-,(M.).

A comparison of curves c. and ex kop shows that coefficient of the head of sphere

T7 +

- _ -

S./, :} b

44

43
8 a2]•+', 1 . ...." 3, 0 .

0'. O 4 4 2 4 A 0 ' ,,,,L

Fig. 5-48. Drag coefficients of sphere depending
on X number on basis of data of tests in wind
tunnel and under field conditions.
KEY; (a) Testa in tubes; (b) Field tests;
(c) By Euler formula

Xr- c - kop at subsonic speeds increases insignificantly. Consequently, the

"compressibility stalli, of sphere rosistanoe in sone of transonic speeds, which

is expressed in very sharp increase of ca (from 0.15-0.35 to 0.9-0.95) occurs

mainly as the result of increase of afterbody resistance.

At supersonic speeds, c continues to increase and will attain a maximum value

at Mo ý 1.6. xxam [portion) of curve exthis zone is very gentle. At Mo>ex kop.

intensively decreases.

In Fig. 5-48 also results of other investigations are given. It is character-

istic that at transonic and supersonic speeds all experimertal data agree very well*.

*In Fig. 5-48, there is plotted also the curve cp, constructed by the Euler
formula: C'sas+ )

It is curious to note that the Euler formula, derived about 200 years ago,
gives results close to experimental values of ex at M.. 4 .
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AtMI> Ithe resistance of a poorly streamlined body is practically independent

of Re.0
5-15. Motion of Gas in CurvilinearChannels.

In the motion of gas in curvilinear channels specific phenomena develop.

Actually, let us consider the flow of gas along a channel of constant cross-section,

in which the flow makes a 900 turn (Fig. 5-49). Momentum in channel is small in

comparison to speed of sound, so that influence of compressibility can be disregarded.

in connection with the fact that the particles of gas moved along curvilinear

trajectories, the pressure at external (bend) and internal (convex) walls of channel

is found to be different and varies differently in direction of motion. Since the

particles in the core of flow under action of centrifugal forces are pushed to

external wall., then pressure along AB increases in comparison to pressure of in-

coming flow pl, and along AiB 1--decreases (Fig. 5-49sa). After the turn the pres-

sure on concave wall lowers, but on convex increases; at a significant distance

after the turn the pressures are equalized.

Thus, in sections of curvilinear channel there is established nonuniform

distribution of speeds and pressures; here a transverse pressure gradient develops.

Particles of fluids, moving in a boundary layer along flat walls, are under the

influence of difference in pressure and in possessing small speed in direction of

main motion, will overflow towards internal wall, in undergoing a greater deflection,

than particles, more distant from the walls. According to conditions of continuity

in the core of flow, there should develop compensating flows, directed towards

external wall. As a result in the channel there will form a secondary vortex mo-

tion,, superposed onto main flow. The streamlines of secondary flow are enclosed

within cross section of channel (Fig. 5-49,b).

The secondary flow consists of two flows, which near the flat walls are

directed towards convex surface, and in center of channel-to concave surfa~e of

279.



(% 1 .,or-p>O , (5J)"°A8-" .

0J.

E I)

Fig. 5-49. Diagram of flow in curvilinear channels
with varying shape of cross section.
Kff: a) P concave - p> 0; b) P convex - p . 00;
a) Streamlines of secondary flow; d) Convex wall
AliBDi., e) Along E-F

channel. Secondary flows have symmetrically-helical character. The streamlines

of secondary flow on flat walls are indicated by dotted line (Fig. 5-49,a).

Along section of concave wall AB and along section of convex wall B D1 is the

diffuser flow. Depending upon the shape of curvilinear channel here there can

appear separations (zone I and II in Fig. 5-49,a). The separation on concave wall

AB can be localized by subsequent nozmle flow in the sector BD. The separation in

sector RI D has a larger extent along the flow.

Structure of secondary flow in curvilinear channel and additional loss of

energy caused by it considerably depend on geometric shape of channel and mode of

flow (Re and H number).

Uperiments show that structure of secondary flows varies with a change of

shape of cross-section of channel (Fig. 5-49,b). The greatest differences in the

above-considered diagram are detected in channels with a rectilinear shape of

cross-section (1 ) a and 1 • In the case, 1 ) a, secondary motion of gas along
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Fig. 5-50. Influence of radius of curva-
ture of concave and convex walls of curvi-
linear channel with angle of rotation 9Q0
(a) and the influence of ratios of cross-
sections of channel with angle of rotation1800 on lo0ses according to Kh. Nippert'0
data (l/al-4).

etconcave and convex walls is hampered, since particles must make a long path, during

the period of which friction is reflected. Such an overflowing is found possible

only in the boundary layer along flat walls; it begins on concave surface (alongi

flat walls) and continues on flat walls towards convex surface, where boundary

layer, participating in peripheral motion, coalesces with boundary layer of main

flow and itensively swells. At. the same time owing to motion in boundary layer from

concave surface to convex in core of flow along flat walls there will form copupen-

mating flows, directed to conciave wall. These flow Jointly with boundary layer,

moving along flat walls in opposite direction, will form closed vortex regiong,

embracing not the entire section of walls, but onal a portion of it close to the

convex and flate walls. In the channel of rectilinear cross-section under consid-
eration thf secondary flow degenerates into a pair of jortices, revolving in Ii

opposite directions.

In the formation of the secondary flow a part of kinetic energy of flcw is
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expanded. The loss of energies, caused by curvature of channel can be considered

as the sum: 'a) of additional losses to friction due to secondary motion; b) of

vortex losses in zones of separation; c) losses, caused by vortex compensating flows.

The largest portion of losses consists of vortex losses resulting from separation.

In Fig. 5-50,a there are presentad Kh Wippert's data characterizing the in-

fluence of certain geometric characteristics of channel on losses. Here coefficient

C noS defined as the difference between total energies at er.try and at exit,

related to the kinetic energy heat at the entry into channel.

As can be seen from Fig. 5-50,a CM considerably depends on internal ri

and external ra radii of curvature and geometric nozzle condition of channel,

determined by the relation --I . If a> I, then the channel is a nozzle type and

if <1, then the channel is a diffuser type. With a given ratio of F, the change

in ri or ra results in a change of the ratio and, consequently, of the cross-a1

section area along axis of flow. Points of minimum of curves C ao correspond to

different F.- - depending on ri- !I. Optimum values of F are somewhat less than
difret~ a1  a1  soe

ra" With a given rio an increase in rFa>raopt results in an especialUr sharp

increase of losses. In this case, curvilinear channel acquires an alternatingly

narrowing-ixpanding shape; speeds of flow at the turn and the losses increase.

Curves in Fig. 5-50,a also reflect influence of parameter 1. In diffuaer

channel (a < 1) losses are greater than in channels of constant cross-section(as= 1)

and of nozzle Fd>1) sections.

In the entire range of values of Pi and Fa the envelope of curves C (i.. , sa)

lies higher for diffuser channel (i - 0.787). The channel of constant section

(F - 1) occupies an intermediate position.

An analogous influence of geometric parameter 1 is detected also for a

channel with angle of rotation 1800 (Fig. 5-50,b). The minimum of losses in such

channels correoponds to values j.,>I. in which optimum compression in exit part of

channel decreases with a transition to diffuser channels (aW< I).,
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In Fig. 5-51 there are given values of radii of curvature and relationship

of characteristic sections of channel, assuring minimum intensity of secondary flows

in a curvilinear channel. From the graphs it follows that in diffuser and slightly

nozsled channels it is expedient to make average cross-section of channel am larger

l (a, ).and then to assure a nozzle flow by a corresponding compression

In this case difference of pressures decreases betwoen concave and convex surfaces

in sections, where curvature of channel is a maximum, and, consequently, the

intensity of the secondary lowers. Besides, the compression of exit part of channel

reduces region of separation on convex wall A1B1 (Fig. 5-49,a), and in certain

cases also prevents a separation. Experiments of Kh. Nippezt showed that depending

upon angle of rotation, and radii of curvature of concave and convex walls, the

optimum relationships of magnitude a. and al vary.

us • These relationships depend also on

geometric nozzle state of channel, i.e.$

i, 4 1 on a. Experiments show that with an in-

47 I am, crease of radii of curvature of back and

I- -/~ concave surface losses from secondary flows

r - deocroase. At the sams time (Fig. 5-51,a)

'it',with increase of radius of curvature, r

optimum value of ; increanon at a givenFig. 5-52. Optimum values of a m

dependrni on geometric nozzle- angle of turn of flow and degree of channel
state of curved channel T on
basis of data of Kh. Nipperi. convergence (i). The dependence of k on
Angle of rotation 1800. ;,o corresponding tc minimum losses in

curvilinear channel with angle of rotation 1800 is shown in Fig. 5-52.
One must also note the influence of relative height of channel . on the

&2
optimum value of parameter im. As can be seen from Fig. 5-51,b, the relationship

- 1
f(.- ) has a maximum, the position of which is determined by the overall

channel construction a.

284_



I":0

24
o 4

0 4 i 1 0,o 44 o. , 4.17 0,3

Fig. 5-53. Change of loss factors in curvilinear
channels depending on M^ number at exit (experi-
ments of V. I. nlikitin)3

0 The influence of the two most important mode parameters-the Re and X numbers-

On the loss and structure of flow in curved channels can be evaluated on the

basis of curves in Fig. 5-53. With an increase in Re, the losses in channel decrease

and turbulization of layer near separation results in the displacement of line of

separation along flow which also causes a sharp lowering of the losses.

Influence of compressibility at pro-stall speeds is reflected in the fact

that intensity of secondary flows lowers. Analysis of distribution curves of

pressures (Fig. 5-54) shows that with an increase in M, transverse prosage gradients

in Channel decrease, sinrce pressure coefficients increase more intensely on convex

surface,0 than on the concave. At M >Ml.on concave wall there appear local %ones

of supersonic speeds and the shocks enclosing them. The separation of flow, caused

by shocks, results in an increase of loss factors (Fig. 5-53). At supersonic

spoeds there I.s noted a lowering of losses from secondary flows.

0
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Fig. 5-54 Distribution of pressures along contour
of curvilinear channel-----ozzle channel, 12=2.4,-- -diffuser channel 1- 1875 .

(a) Diffuser channel (b) Nozzle channel; (c) No. of
points.

5-16. Rotating Flows of a Viscous Gas

In See. 5-1 it was noted that the enthalpy of stagnation in the flow of a

viscous gas with nonuniform distribution of speeds is a variable quantity and the

condition io- const cannot serve as a characteristic of the flow and as an integral

of the equation of energy of adiabatic flow.

Most clearly this effect is detected in rotating flows of gas and, in part-

icular, in a Ranque vortex tube (Fig. 5-55).

Cas is fed into vortex tube by nozsles tangentially under pressure (section

0D in Fig. 5-55,a) and will form within tube a rotating flow. From one side,

(in section AA) flow leaves through aperature located on axis of tube. On opposite

end of tube exit aperture is made in the form of annular slot, located along

periphery (Section BB). As the experiment shows the gas, flowing through central S
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aperture (in section AA), has a significantly lower temperature of stagnation, than

on periphery in section BB (Fig. 5-55,b). Thus, for examples on basis of I. Hartnett

and B. Ekkert's data the maximum difference of stagnation temperatures corresponds

to section 1-1 and will attain a 2agnitude To,- T = 75 to 800 C. According0

to the degree of distance from section 00, profile of stagnation temperatures levels

off and in section III, the indicated difference will attain only 400 C. It is

characteristic that stagnation temperature on periphery T varies along tube less

intensely, than temperature on axis of tube, which sharpl~r increases towards section

BB. The lowest stagnation temperature on axis corresponds to section I • I.

Consequently, in such a tube there occurs temperature separation of gas flow, in

which through central aperture strongly cooled gas flows out.

Velocity profiles in different sections show (Fig. 5-55,b) that in tube there

occurs an intense rebuilding of flow: speed towards periphery intensely decreases

towards section 111-11, and in core on axis somewhat increase.

The nonuniform distribution of speeds along radius explains intense dissipation

of mechanical energy, internal liberation of heat and nonuniform distribution of

stagnation temperature. About the very intense dissipation of energy it is possible

to judge on the basis of experimental graphs of the distribution of stagnation

pressure and static pressure (Fig. 5-55,c).

An approximate theoretical solution of considered problem can be obtained for

simplest case of one-dimensional circular motion of a gas. Let us assume that the

field of axial components of speed in tube are uniform. Surfaces of the flow of

such rotational motion of gas will be cylindrical: radial components of speed

and their derivatives vanish. By ignoring the influence of body forces and by

assuming the motion steady, it is possible to use equation of conservation of energy

(5-3) in the cylindrical system of coordinates:

tr W ) ol . (5-79)
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Here eg is the circumferential (tangential) component of speed.

In assuming in addition, 1 = const, equation (5-79) can be integrated. The

total integral (5-79) for considered case was obtained by L. A. Vulis in such a

form: A dr
I+ Pr I -Pr J*i -,- + cost. (5-8o)

For obtaining of the sought relationship in finite form it is necessary to

know law of variation of c@ (r). It is expedient to consider two limiting cases:

a) in assumption of circulatory (quasipotential) flow, distribution of speeds in

which is subject to the condition er - conat, (Sec. 1-2), and b) for a linear

distribution of speeds cor - const, corresponding to vortex core (quasi solid flow)

(Sec. 1-2).

In the first case after substituting in (5-80)

where is the tangential component of speed in peripheral section, outside the

boundary layer;

0 re- radius of tube,

there can be obtained: 4e
1+ T (!-2 Pt) '+C€o,, (5-81.,

where . - r is the relative radius;

iO is the current value of enthalpy of stagnation.

The constant on the right hand side is found by writing out (5-81) for section

- 4r w ro, r - 1. Then coast I-. -(I -2Pr).

Here te is the enthalpy of stagnation in section F 1 (in peripheral section

of tube).

After substituting the value of constant in (5-81) finally we find

Since a- is the maximum speed in peripheral section, then

where ao is the angle between vector of speed c. and plane of rotation of ga.s.

Consequently,
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From equation (5-82a) it follows that under condition eir const, enthalpy

of stagnation increases with approach to walls of tube, if the number Pt> 0.5.

At Pr - 0.5 enthalpy of stagnation is kept constant along radius, and at Pr" 0.5-

increases towards axis of pipe.

For a coil of flow on basis of law -r- - const, from (5-80) it is simple to

obtain following formula: A . I )S .."4;i- ; 10-'•0% (5-83)

In this case without the dependence on value of Prandtl number, enthalpy of

stagnation decreases towards axis of tube. It is obvious that if for two different

laws of the distribution of speeds along the radius, enthalpy of stagn. ion

decreases towards axis of tube, then also for any intermediate law there will take

place an analogous change i0 .

It is of interest to evaluate change of enthalpy of stagnation along radius

in fractions of kinetic energy !L

We designate: -
4(.--J . -- t .

where I is the enthalpy of a moving gas in section r - r
10 w0

By using formula (5-82a) and (5-83), we obtain for the two different laws

on distribution of speeds:

(o "•1 - 2P,1 (!-- 9)s C(S,:

li . (I -M ) co oo a..

L. A. Vulis considered the more general case of distribution of speeds,

corresponding to the equation'

Here integral (5-80) after usual transformations, acquires the form:

*Formula (5-82a) at point r-O gives . -- m . This result Is readily explained,
if we remember that on the axis of circulatory flow the speed assumes an infinite
value ( -V const). Here, there is located the point vortex, distribution of
speeds in which is linear.
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It follows from this that with such circular motion at Pr> 0 enthalpy of

stagnation varies along the radius.

0 For a plane-parallel flow with nonuniform distribution of speeds, enthalpy

of stagnat.ion is determined by formula (5-2).

Distribution of static temperature across a section of a rotational flow of

gas in established by means of equation of energy (5-80), In considering particular
Ce

case of a coil on basis of laws cr - conat .and l-- const and by remembering that

+4 r

from formulas (5-82a) and (5-83) we find:
I _,_ 12 -+ Pr ;cosSSS (5-85)

for cq - conet

S TSand -%S r ( V Coss• .
n(5-86)

for -- const.

The change in static pressure along radius can be found, by using equations

of the motion in cylindrical coordinates. By taking into account main assumptions

(radial components of speeds and longitudinal pressure gradients are small . field

of axial speeds is uniform) first equation of system (1-17) acquires following form:

I d ell(5-87)

Meaning of equation (5-87) consists of the circumstance that it expresses

condition of radial equilibrium of a gas particle, realizing a rotational motion.

In considering that P &-- I)i'

we present (5-87) in a new form:

(A-88• t--, -'i.."

by substituting here i from formulas (5-85) and (5-86), after integration there

can be obtained the approximate relationships 2(r).

The above-obtained formulas of the variation of parameters across a stiction

of vortex tube can be used, if the speed on periphery of tube e• is known.' For

I
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calculating the flow in different sections along length of tube it is necessary to

locate by experimental relationships c,0x) and ae(x) (x is distance a•long axis

of tube).

In accordance with a change in P% along length of pipe* also the distribution

all, parameters along the radius varies. In certain sections there occurs an

equalising field of static pressures and temperatures and temperatures of stagnation

in which these sections (p - const; T - conet and T.= const) do not coincide.

M. G. Dubinskiy theoretically proved that in section with constant static

temperature along radius there will be attained a maximum of entropy of a rotating

flow of gas. Consequently, twisted flow in a vortex tube tends to an equilibrium

state, which also will be attained iii the section with T - const.

The equalizing of flow in vortex tube is illustrated by graphs in Fig. 5-55.

Thus, in a vortex tube there is detected the offect of temperature separation

of the gas, which can be used for cooling of different bodies and, in particular,

in refrigerating installations of transient operation et cetera. At the same time

this effect deserves further detailed theoretical and experi/ental study, since it

is developed in all cases, when a rotation of the gas (step turbomachine, vortex

pump et al. develops).

It must be emphasized that a nonuniform distribution of stagnation temperatures

in an adiabatic flow of viscous gas, associated with nonuniform distribution of

speeds, is detected also during an external flow around bodies (in boundary layer

and wake). In all oases, when the liberated frictional heat*- is not equal to

quantity of heat, diverted by thermal conductivity there takes place a nonuniform

*We recall that the entire calculation is made without a calculation of the
boundary layer; the speed co is taken at the outer boundary of the layer.

**The liberation of frictional heat occurs only in those regions of flow where
a nonuniform distribution of the speeds associated with the action of viscosity
has been established.
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distribution of the total energy.

Of significant interest is the motion of a twisted flow* in cylindrical

annular tube., In this case original equation of energy (5-79) must be integrated

for the annular revolving flow.

0

* Such a problem occurs in the investigation of a twisted flow in a tvu~bo-
machine stage (turbine or compressor).
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CHAPT ER 6

OUTFLOW OF GAS FRCK NARROWING NOZZLES AND APERTURES.
THE LAVAL NOZZLE.

6-1. Narrovin Noumles.

Narrowing nozzles are widely used for' creating flows of subsonic and transonic

speeds. The hydraulic design of such nozzles is very simple and reduces to deter-

minin the dimensions of exit section on bais of a given flow of gas and given

outflow velocity. In the calculation iý is assumed that the flow of gas in the

nouzle is adiabatics since for the brief period of time of the passage of gas p&rti-

Iles through a nozzle, a heat exchange with environment virtually is not established.

Consequently, for calculating a nozzle there may be used equations of adiabatic

flow. If we disregard the effect of friction, then the flow in nozzle can be

considered isentropic. As experience shows, frictional losses in short nozzles

are small.

After designating, as previously, parameters of total stagnation p,# To, and p,

(in considered case-these are parameters of gas in a reservoir), and parameters of

medium after nozzle p&, Ta. and P9. we an, determine the speed in exit section F of

nozzle by equation (2-10):

IM i.
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where Pa. is the ratio of pressure after nozzle to pressure in reservoir;
pO
k-i

k

On the basis of the equation of continuity there may be found the mass flow

rate of the gaso

After substituting here the value of speed from formula (6-1), we obtain:
1 l -(6-2)

:•,,O = . m F Vr k -- , , r ' -

Formula (6-2) gives the flow of gas depending upon pressure and density of gas

in a reservoir and pressure of medium. This formula is valid on the assumption of

a uniform distribution of speeds in exit section of nozzle F. The outflow of gas G

depending upon s, varies the same as the reduced flow q.

Aetualýy, since G---Fqpa. , then after substituting tho values P. and a we

obtain. -

I

v~~FV~p~yi+(r kIs) (-

From a comparison of equations (6-2) and (6-3) it follows:

9 - I- I-I

Formul•s (6-2) and (6-3) show that the Maximum value of flow corre~onds to the

cr~itial peLed . - I and,,orrespondingly,oritioal ratio of pressures ,,=•,,*

The maximum or critical flow is obtained after substituting ,e, into

the equation (6-2) or a - 1 into equation (6-3):

pay*= (6-5)
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Torwula (6-5) is readily obtained by substituting 1 1 into equation (2-38),

For 0. 1,4 2,145F/pT-. 0o,390F -. -

For (6-6)

k c=t,3 0. ==2,09FV/ Fj,-,-,30~5F

The equation of flow (6-2) shows that in a given exit section of nozzle with

decrease in . atl•> tothe flow of the gas increases, and ate, , according to equation

(6-2) the flow of gas should decrease. However, the latter does not correspond to

reality. Consequently, equation (6-2) incorrectly describes the process of gas

outflow at ,o< ., if into it we substitute the ratio of pressure os medim Pa to

pressure in reservoir pc.

Let us consider the outflow from a narrowing nozzle with Zixod values of the

prossure and Loaperature in reservoir and a variable pressure of the medium pa.

As long as pressure of the medium is higher than the critical pressure, cal-

oulated by parameters of gas in a reservoir, any changes in Pa are propagated
also inside the nozzle. In this case, the flow of the gas changes in accordance

with formula (6-2). When a decreasing pressure pa attains a critical value p*, in

exit section of narrowing nozzle there is established a critical speed and subsequent

changes of the pressure of environment cannot penetrate inside the nozzle. Conse-

quently, actual differential of pressures, creating a flow of gas through the nozzle

at p8< p.. irrespective of dependence on magnitude of pressure of environment, will

be critical, and the flow of gas-maximum and constant. It follows from this that

formula (6-2) at p.<p. only in this case gives correct values of the flow, if into

it is substituted the critical pressure, which is established in the exit section

of narrowing nozzle, irrespective of dependence on the mag-itude P1. At moment

when in exit section critical parameters are attained there occurs k unique

phenomenon "cutoff of nozzle*, as a result of which the nozzle and reservoir are

*he same as in the case of outflow from tube (Chapter 5).
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found to be isolated from the environment.

Thua, at,*<..into formula (6-2) it is necessary to substitute E. The flow

0 of gas remains constant and is determined by formula (6-6).

The distribution of speeds in exit section of nozzle exerts an influence on the

character of the dependence of G on ta. The above-obtained formulas are well con-

firmed by experiment only in the case when the profile of nozzle is made smooth.

The smoothly narrowing shape of the nozzle approximates the distribution of speeds

in exit section to uniform. For this purpose walls of the nozzle must be cal-

culated in a special mamner.

The profile of a narrowing nozzle can be calculated by the Vitoshinskiy formula:

re

30Y (6-7)

The magnitudes, appearing in formula (6-7). are explained in Fig. 6-1; •' -

Such a profile in useful for noszles, connecting two pipes of different

diameters, when the flow during transition into pipe of

Fig., 6-1. Diagram for con-.
structing a narrowing nozzle.

smaller diameter should be accelerated, but the speed at every poiAt or exit

section of nozzle should be identical. Nozzles of such profile are used for wind

tunnels of subsonic speeds.

The experiment shows that in wide range of speeds up to a - 0.90 to 0.95,

* field of speeds after the nozzle are fairly uniform.
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In aonnot•ing nossle directly to reservoir its profile can be outlined by

arce of a circle. Sometimes profile of nozzle is outlined by limniscates.

6-2. &arrowing Nozzle with Variable Mode cf Flow

In the variation of parameters of a gas in the reservoir and after nozzle the

flow of gas and spectrum of the discharging stream vary. By using relationships

(6-2) and (6-5), it is possible to analyze the change of flow during a simultanooua

change of pressure in the reservoir p0 and pressure of medium p a

We shall designate:

Po ma is, the maximum pressure in reservoir;

0* =x is the maximum critical flow corresponding to this pressure.

Po O*are current values of pressure in reservoir and of the critical flow.

On the basis of formula (6-5) it is possible to express the ratio of the criti-

cal flowse

In assuming that with a change of pressure pc the temperature of gas in the

reservoir T is kept constant, we shall obtain:

01, , (6-9)

At T0-conat and constant pressure in the reservoir the change in flow depend-

Ing on pressure after nozzle p a is expressed by the already above-known equation

(6-2).

It is readily noted that the ratio of flow with a given counterpressure to the

critical flow in equal tot

-, =(6-10)

From expression (6-9) it follows:

Q~~t±O MIA%~

After substituting G0into equation (6-10), we obtain:
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It follows from this that with a change of the initial preosure all points of

the curme of reduced flow are displaced in proportion to c0, i.e.# proportionally to

the chan&e of pressure before nomsle.

Consequently, ratio of the flow 0 to maximum critical flow 0*,,, can be

presented depending upon e. and @,. This dependence is graphically expressed in

the triaxial system of coordinates (Fig. 6-2), where along the three axes there

are plotted ."'= T. ' p•,,,•and qu'

As a result, we obtain certain conical ourface each point. of which determinesI
the flow of gas through narrowing nozole depending upon pressures before nossle

and after it. The plane triangle OEBB, whose points correspond to region* of critical

flows of gas serves as 4e extension of the conical surface OAB (Fig. 6-2).

, Wig. 6-2. Conical surface of reduced flow rate.

"Equation (6-l) can be presented also in a biaxial system of ooordinaas, after

constructing curves q . (*, for different, but constant values p. Then, we

*obtain a grid of relative flows of gas, which is the projection of conical ;urface
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on'to Plans No A!. Grid of flows (Fig. 6-3) is verr convenient for a graphic
calculation of noszlo.during variations of the mode.*

Numerous experimnts have shown that equation of surface of flows (6-u1) can
be slimplified by replacing the accurate formula of reduced flow q by an approximate
expression. With subcritical pressure differentials (r,>Qa the dependence q- q(e.)

Fig I -3 G'd of 11 redce Ohlow f

ca b reete s nar f nelise hoeeqaio aste0om f
All.2

ca ftber preplnedacng in eqa tiof n (6ise- hseeutinhs h o) f

wefotern relcn neuto (6~-12)' ~
q~ I

We shall designate: L adi
M'.'j~i Pe POi "IM

Then (6-13) will, be transformed to:

+ I*

whence

.14.*A. V. Shoheglyayev, Steam turbines, State Power Engineering Publishing House,
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S When *, const, equation (6-15) gives the relationship qj-= q (W), eince for
W smoothly narrowing nozzle a, depends only on physical properties of the gas and

is at k - const a constant magnitude.

In the study of a variable nozzle mode of great practical interest is the char-

acter of change of spectrum of stream after the nozzle. For subcritical modes of out-

flow of variations of parameters at the nozzle entry and exit slightly exert an

influence on the shape of flow after the nozzle.

With superoritical dropi in pressures the transition from a critical speed in

exit section to superson~c speed occurs in the free flow after the nozzle.

In this case, the edge of exit section AA (Fig. 6-4,a) is source of disturbance

of sonic flow. After the exit section the stream encounters the pressure of the

medium Pa (p& in less than critical) and, consequently, at points A and A1 (Fig.

6-4,a) pressure varies from pto pa" As a result, from edges of nozzle there

are propagated two 1ves of rarefaction: AAI 1 and AIAB, whose outer boundaries are

the characteristics. The first boundary AA1 in the characteristic, whose angle

second boundary AB1 must pass in the free flow at an angle

ago - aresin --- h-I (6-16)

Between these two boundaries are located the characteristics, whose angles

vary within the limits - - : ,

In reality, however, all the characteristics, including AB1 and AIB, have a

variable angle of slope and, consequently, are curvilinear, since waves of rarefaction

from points A and A curvilinear within the limits of the flow intersect. Int•or-

section of the waves occurs in the triangle AA D. Besides, characteristics,

falling onto the free edge AB and A1B1 , are reflected from it with opposite sig%

and waves of rarefaction change into compressional waves.

O As a result of interseetionin the flow there will form a wedge of rarefaction

ADA 1, thi5 base of which is located in exit section of nozzle. Within the limitil of



Pig. 6-4. Diagram of spectra of
stream after narrow. ng nozzle with

unrated conditions ( .Ia )> •

wedge there occurs a significant decrease of pressure, which in this zone becomes

lower than the pressure of the medium P

Since waves reflected from the free edge intersect within limits of the second

wedge DBB 1, then here pressure increases to value p. in section BBS; wedge of rare-

faction changes/into a wedge of compression. Consequently, the points B and B1,

the pressure at/which varies from p* to po, also are sources of waves of rarefaction,

and spectrum oi stream is repeated. It is readily noted that sectors AA, and BB1 -

are equal. At the intersection with rarefaction wedge, streamlines ame deformed,

by being deflected from the axis of nozzle: sections of stream incdreaseo, and the

stream "swalls.n Within the limits of the reflected waves flow is compressed and

its sections decrease. Edges of the streams, aysrnetric with respect to the axis,

acquire a wavy form.

On the basis of discussion it is possible to forecast the character of change

of pressure along axis of stream. Within the limits of a wedge of rarefaction, the

pressure drops from p*1 to certain value -pD<p,.,. and within the lim~its of wedge the

compression increases to p.; farther the process is repeated. Pressure in stream

varies by certain periodic law, close to sinusoidal. The character of change of

speeds along axis of stream will be corresponming. In the sections AA, and BB1 0
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speeds are critical. Between these sections the speeds are supercritical, where

at point D the speed will be maximum. Consequently, the entire region of stream

ABBI A is supersonic.

Spectra of stream in the considered regLmes are maintained qualitatively

identical for two-dimensional and axially symmetric nozzles, however, in the last

case the waves of rarefaction and compression have a conical shape. In an axially

symetric flow, therefore, there will be formed cones (but not wedges) of rarefaction

and compression. As the pressure increases in the reservoir or lowers after the

nozzle, the spectrum of flow gradually is reconstructed (Fig. 6-4,b). Angles of

waves AB and A B decrease, the height of wedges ADA and DBB increases and angles

at apex of wedges (cones) decrease. Distances between the sections AA1 and BB1

increase.

For an axially symmetric nozzle much a gradual reconstructing occurs up to

certain limits. In attaining a certain ratio of pressures a, picture of flow after

nozsle varies in a critical manner.

Owing to the intense decrease of pressure of gas within limits of a cone of

rarefaction, genatrices AD and A D change into curved shocks AD and A D (Fig. 6-5,a),

and at cone of flow there will form a normal shock DDl, which terminates the curved

shocks. In the external flow the curved shocks DB and D1B1 appear. Thus, in the

flow after nozzle there appears a bridge-like shock ADBBI D IA . The shocks DB and

DIB1 go out beyond free edge of flow and are reflected from it in the form of waves

of rarefaction. The waves of rarefaction also are terminated by curved shocks.

At the intersection of normal shock DDI speeds of central part of stream become

subsonic, and the pressure intensively increases (p>p.). In the transition through

the shocks DB and D1 B the speeds remain supersonic. Consequently, the lints DE

and D E1 are lines of the tangential discontinuity of speeds. As a result of the

interaction with external supersonic flow, the subsonic core of flow is accelerated,

and a section of it decreases to the minlmum EEU, in which there will be at t ined
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a soni* speed (N - 1). After the section IM speeds at all points of the flow are
1

supersonic. As the differential in pressure further increases, the system of shocks

gradually is reconstructed (Fig. 6-5,b). The extent of the normal shock increases

and the shape of curved shock which limits the overexpanded supersonic core varies.

It is necessary to emphasise that external parts of the flow ABFEDA and

correspondingl A BiF EDA , the same the core AfDDA at any

value ta<'. Thereby will remain supersonic. Subsonic speeds are detected only

in small sector within the flow after the shock DD1 * One should bear in mind that

all above-cited considerations do not take into account the influence of viscosity

and, in particular, the interaction of the flow with the environment. Spectra of

the outflow from a narrowing axially

_ _ symmetric nozzle are given in Fig. 66

Here, there clearly are seen all stages in

the development of spectrum of stream at

r, <s. We note that the supersonic sectors

of the spectrum for a two-dimensional nozzle

can be calculated by the method of char-

acteristics. For an evaluation of quality
Fig. (,-5.

Diagram of spectra after narrowing of nozzle, the coefficient of flow It,
nzzoale at sa<63 coefficient of speed (f and loss factor ,:

are used.

goefficient of flow is determined by the formula
,-G, (6-a?)

where G is the actual flow of gas through nozsle;

OT is the theoretical flow (in an isentropic process).

Coefficient of speed is ratio of speeds in real and theoretical processes:

=. T (6-18)

In Figs. 6-7 and 6-8 there are presented coefficients p, and I for narrowing
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4)

Fig. 6-6. Ouatflow of air frosm a narrowing noaul.
with supercritical differentials of the presaurski.
a) - -0. 51; b) 0- 0412; c) - 0.267;

d5 - 0. 05.
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AI1 M an4 nal nose depeMa4 ag an and f t. The ourVi show idth an

Fig. 6-7. Flm oooeffoients P# and coefficients

of speed v. for .conial and profiled noselee.

* nJuo'a ISJn the difterential of rneouuzeu and decrease o tf ngle of coicity the

soefstelent of flow inoresasee. An analogous result is obtained als tofo a profiled

mos.le, Kowverw, m m o,, in the latter ame correapoti to sazr-ritimoal speeds.

'he absolute valiass of Ip obtained awe higher for a profiled nosule. At e;' 0,7v

euO ss in Fig. 6-7 retlot not only the influttene of oompneesibilityp but also that

ot the eynolde number (Fil. 6-8).

Coeftfioent of speed of canical nousals varies little depending oh the angle

f eanaility, In a wide r'anhe of ,, the oasn value , aounts to , 0,97, For

V.,.

Fig, 64. Influenoe ot Ro number on coetfiolent of flow

in narrowlng nos•ls.

•mosld5, profiled b7 tofmula (6-7), the values c, obtainud are higher (Y, " 0.985

to 099)."



A marked influence of ratio of sections, angle of conicity and a. is explained

by the change in structure of flow in stream after nozzle.

SWith an increase of L frictional losses decrease in nozzle, but at the same
F.

time field of flow at the exit bectmem more nonuniform. Analogously, also, the increase

in angle of conicity, with whose increase the field of flow at the exit acquires are

increasingly greater nonuniformity, exerts an influence.

As 'example of the application of grid of flows let us consider the flow ot gas

in system of consecutively connected noszles. Suppose in a tube there have been fixed

Snarrowing nozzles with an Identical area of exit section (Fig. 6-9). We assume

that the diameter of tube is much larger than the diameter of the nozsl. ; speed of

gas in the tube can be ignored.

With the outflow through each nozzle the gas expands and its speed increases.

.In intermediate chamber the process of conversion of kinetic energy into heat takes

place. In considered diagram of the apparatus there is realized a complete trans-

formation (complete extingusishing) of kinetic energy. The flow of gas loses speed

owing to the interaction with particles in chamber, and also to impact against wall

of following nozzle.

Thu process of extingusihing the kinetic energy in apparatus is isobaric. The

state of gas at entry into nosules is characterised by condition i - const or T

const (Fig. 6-10).

P0K

Fig. 6-9. Diagram of nouzle appar- Fig. 6-10. Diagram of proceiss in
atus with complete extingushing of thermal diagram of nozzle aplArtus.
the speed in intermediate chambers.

A characteristic peculiarity of process in a nozzle apparatus is the l..icrease

O of entropy in the intermediate chambers.
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toeoaloulation of a nouals apparatu• in realised by meian of equations (6-3)

and (6-12). In considering that the flow for all nozsles will be identical, from

the indicated equations we readily obtain:

_.t",..... . \'

- . -i)-- * " V ')', 6-9

Here q1 in the reduced flow thx'ough first nozz le;

Peip, P s 'e~in psi ASPa

Pkis the pressure of stagnation respectively before and after first nozzle.1

after noszle (n--1) and after the apparatus;

am .I-L in the ratio of the pressures in nossle n and a.

The value em is determined by formula (6-19)t

?' (6.20)

Honce we conclude that since ',, <* -,.1$ # then e, .,, o-,. For each subsequent I
noles, the ratio of the pressures will be lose than for the preceding. In accord-

ance with this the dimensionless speeds along nozzle apparatus will increase

(h. -:'A.-O) and, consequently, the oritical speed (x, I) will be manifested in

the last nozzle (irrespective of whether a couplete or partial. extin-

gushing of kinetic energy takes place in intermediate chambers) if

,i< 0,.. where u. is the critical ratio of pressures for the nozzle apparatus.

The same conclusion can be reached from simple physical considerations. Actual-

ly, with a drop in pressure, also the gas density drops. But since the exit sections

of nozzles are identical, then In order that the gas flow remains constant, it is

necessary that in each subsequent nossle the speed increases. Obviously, the

maximum speed will be established in the last nozzle.

From equation (6-19) for last noszle it may be obtained that at

, . ,,i " "1"
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a critical ratio of the pressures for nozule apparatus will be:

*."'.' (6-21)

where q is the reduced flow through first nozzle during a critical outflow from

the last.

For each nozsle at c constp it is possible to plot the ourves q - q( e )

(Fig. 6-3). The lite of critical flows is determined by equation (6-21) (line OB

'in Fig. 6-3).

It should be emphasised that formula (6-a1) is completely equivalent to formula

(5-19), obtained for a tube of constant section. Hence it my be concludedo regard-

less of the dependence on physical peculiarities of motion of gas (without an energy

fexchange with environment), but accompanied by an increase in entropy, the limiting

mode of this motion , considered within the frame of a one-dimensional diagrampis

described by Identical equations.

By mean* of the diagram in Fig. 6-3 it is possible to solve the following

problems:

1. If there are given the reduced flow of gas and number of nossles in appara-

tusr *, then one can determine lob . and also ,j% and s, i.e., establish the dis-

tribution of pressures in nossles.

2. The r can be found number of nosslss, if the flow a and relative pressure

after last noszle ,,k, are known.

3. For the known value qone can determine the critical ratio of pressures

end the number of nozzles s.

Let us consider corresponding examples.

L~ Let us assume that number of nossles, a 4, and the reduced flow q, 0.5.

At the intersection of line q, - 0.$ with the curve q - q(o ) for first nottle we

shall ;find the point bl, which determines ,, . The curves bj1 b2 will give the

same dependence for the second nozzle. Consequently, at the point b'2 we oItain
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' " After L4• ti, this construction up to point bt W we shall

detewrmtfr i.•Aie relative pressure " O

2. Suppose the flow q, M 0.5 an thb ratio of pressures r - 0.69 are given,

Then the original point in grid of flows i4 -be the point b at the intersection

of the line q 0.5 of the arc of ellipse . - 0.69. By shifting along this

line up to oLxis £ and then along the vertical to line q, 0.5, successively we find

S- -, .....-.

- . "

Fig. 6-l1. Critical ratios of pressures fur nozzle
apparatua depending on number of nozslss a for dif-

ferent values of %.

the points b 4P b14 b 3 p b 3 etc.,$up to point b1 . The number of vertical lines

Wb9 b, b' , b ,eto.,is equal to the number of nohsles of apparatus a.

3. Ws shall now find the number of nomsles at q 05, corresponding to

critical mode of noYml5 apparatus 60. Ln I.. After determing on line OB the point b*,

corresponding to the critical speed in the last nouule, we find the line q-00)

passing through this point, and further in succession we determine distribution of

pressures and the number of nozules j Just as in the preceding came.

Being given different values of q, by (6-21), we find corresponding values
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of to. ando after rolv! S rroblem 3 by the above described method, we determine the

number of nozzles in a critical regize of nozzle apparatus.

Results of such calculations are presented in Fig. 6-3., where we plotted

the go. depending on !-

Of peat practical interest also is the possibility of determining the flow

of gas through the nosale apparatus with % and I given. Such a problem, however,

is solved simply only in that case when the nossle apparatus operates in a critical

mode (. ýokeo, ) with the total extinguishing of kinetic energy in intermediate

chambers. In this case from graph in Fig. 6-11 we find critical ratio of pressures

% for a given number of nossles. The magnitude of the reduced flow ql* can be

determined by the formula (6-21) or by Fig. 6-3 (straight line AB).

We note that curves in Fig. 6-11 satisfy the equation

(6-22)

6-3. utflow fas aFrom Aperture with Sharm Wse.

Theoretical investigations and experiment detect certain new properties of

flow of gas, flowing out of aperture with sharp edge.

Theoretical solutions of this problem have been given in classical works of

U.. !e. Zhukovskiy and S. A. Chaplygin both for low speeds, and also for speeds

c€rensurate with the speed of sound. A subsequent development of method of

S. A. Chaplygin in reference to outflow frcm aperture with sharp edge was made by

F. I. Frankl for the region of sonic and supersonic speeds.

During outflow from narrowing nozsle the smooth profile of the walls assures

gradual expatesion of the flow and determines the shape of the streamlines. The

developing radial components of the speeds decrease during flow through noisile and

townrds exit section vanish. The flow in exit section has a uniform field )f

Sspeeds. With a supereritical differential of pressures the exit section ol nousle
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coinoides with critical.

Outflow from aperture with sharp edge occurs otherwise (Fig. 6-12). In the

"vessel at a sufficiently large distance from the aperture the speed of ga, is equal

to mere, and the pressure-p 0 . After aperture there is maintained a pressure

p, <P0.

Near the aperture to the left speeds of the gas intensively increase, thm

flows of gas contracts and are distorted. The flow of gas in separated from sharp

edges of aperture and then moves as a free stream.

The spectrum of the stream in aperture shows that curvature of various stream-

lines are found to be different. Most distorted are the streamlines along the edge

of stream, and the least distorted--streamlines near the axis. Therefore, the speeds

in the outer streamlinen will be greater than the speeds at the core of stream.

At exit of the aperture there is established nonuniform distribution of speeds and

pressures. The irregularity of the flow is increased by the effect of viscosity.

It is readily seen that the stream will carry after itself the gas of environment

and will be stagnated. The average speed of the stream will decrease, and its

cross section will increase. The washing-away of the stream starts directly from

the edges of the aperture. However, it proceeds fairly gradually. On this basis

it in possible to use following idealized diagram of an outflow through the aperture.

-C,4e assume the gas as perfect, and the motion-irrotational.

On sharp edges A and B there will occur a separation. Since we &seue that

friction is lacking, then there will be no mixing of surrounding gas into the

stream. Consequenty, to the right of aperture there will form two regions: a

free stream and motionless gas with a pressure Pa . Since the pressure at the edge

of stream is constant, then it is obvious that speed on tho edge also in constant.

The problem on determining the shape of such a stream and outflow of gas

through aperture was solved in the classical work by S. A. Chaplygin, "On Gas Jetvj'

S. A. Chaplygin considered case of two-dimensional stream, when the ratio of the

312



0F

p,

.w I

* I

I,



pressures . -- t is greater than the critical or close to it. In this case,

stream has shape illustrated in Fig. 6-12 a. The stream continuously narrows down

where the maximum constraction takes place at an infinite distance from the aperture.

If e*u., then on the' edge of the stream the speed of flow in equal to the critical.

Within the stream the speeds are lower than the critical. With distance from aper-

ture, the curves of the speeds level off and at a certain finite distance from

aperture the speeds in stream become equal to the speed at the edge, where the

leveling-out of the field occurs due to compression of stream and acceleration of

core of flow. The stream contraction which forms is characterized by coefficient

of the contraction, which is determined as the ratio of minim%un width of stream

to width of aperture (two-dimensional problem).

Thus, at , the critical speed is detected at the edge of stream and in

the cross section at a finite distance frcm the aperture, The line of the critical

speed for such a mode of flow is shown in Fig. 6-12,b. With a subsequent lowering

of counterpressure ('8<'.), the stream becomes supersonic. 0
The transition through speed of sound is realized on the line of sonic speeds

AJB, which goes from edges of aperture and juts out into the stream in the form

of amtongueW(Fig. 6-12,c).

Consequently, 'at s.e. the spectrum of the stream is reconstructed. Line of

sonic speeds (line of transition), which coincided at ,-Y=a. with edge of stream

and minimum section, as ,,decreases, is deformed and approaches the exit section of

aperture. To the right of transitional line the flow is supersonic. Deformation

of line of transition is explained by the rebuilding of the field of speeds in eait

section AB and in the exit section, associated with the change of curvature of

boundary streamlines.

Within the "tongue" the speeds are subsonic. The character of the deformation

of line of transition attests to the fact that supersonic speeds will be attained

at first in the external part of stream (on boundary and near it), and later at
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the core which completely corresponds to the distribution of speeds in the cross

section of thb stream. The edge of stream expands. The deformation of the'tongue,,

during change of e. will occur as long as lines of weak disturbances (characteristico4

outgoing from the edges AE and BE1, will fall onto the line of transition ANB.

Angles of characteristics a, with decrease in s. decreeas (Fig. 6-12,o).

Consequently, the deformation of line of transition with a decrease in la will

not be infinite. There exists such a value of the external pressure- . at which

the line of trangition occupies a stable position: a subsequent lowering of the.

pressure of the environment no longer results in its deformation. This mode corre-

sponds to such an angle 2,,*. of the first characteristics, emanating from points

A and B, with which they touch the line of transition, but do not intersect it (Fig.

6-12,d). Pressure p, F. I. Frankl called the second critical pressure. The

corresponding ratio a ±--

we shall call thhe second critical ratio of pressures.

Characteristic peculiarities of a stabilized line of transition are the sectors

lying within the noszle near the points A and B (Fig. 6-12,d),which sh w that along

the edges of aperture from the direction of reservoir the speeds already are super-

sonic. In addition, at %a-s..the line of transition in stream occupies nearest

position to aperture.

In accordance with picture of flow being reconstructed (depending on e.) the

flow of gas through aperture varies. We shall call the coefficient of flow of

aperture to,., the ratio of the actual flow through aperture to the flow of gas

through a narrowing nozzle, having the same area of cross section at exit with one

and the same differential of pressures.

Values of coefficient of the flow at ,•>,., calculated by S. A. Chaplygin for

air, are presented in the first five columns of Table 6-1. For an incomprfissible

fluid • - 0.63.

Above it was indicated that the maximum flow for a nozlie takes place ,dth a

315



critical counterpresuBe and subsequent lowering of counterpressure doeo not exert

an influence ')n the flow. During outflow from aperture owing to change in shape
of the line of transition at a. the flow of gas will increase as long a3 > s.,

Table 6-1

-- I 0,67 0,641 0,0 O.W-9 0.529 0.037

Pee O,680 0,700 0,710 0,730 0,740 0.85~0

At • a, the dtorease in counterpressure does not exert an influence on the
shape of line of transition and, consequently, on the flow of the gas. If the
external pressure is equal to the second critical pressure, then coefficient of

flow has a maximum value.

Values of the coefficient of flow 1,r and of the second critical ratio of
pressure *.. for apertures of different shapes are presented in Table 6-2.

In Fig. 6-13 there are presented curves of the relative flow through a narrow-
ing nozzle and through an aperture with a sharp edge with identical area of cross

.1 I

I I
I I

4 4 q6 1?

Fig. 6-33. Change of flow of gas through nozzleand aperture with a sharp edge with identical area
"of cross section (k 1.4)

KKY: a) Nozzle; b) Aperture.
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S'eootic depending on % for air. In both cases the flow is related to the critical

flow through the nossle.O

We shall establish now the shape of curve of relationship , for an

aperture with a sharp edge. The Naximum flow of gas through aperture can be

calculated by the formula ___

G. _,(623

where r is the area of aperture;

•p, 1i the coefficient of flow through aperture at %= sb;

p., T. are parameters of the gas in the reservoir at a significant distance

from aperture (parameters of stagnation).

The flow of gas through aperture at an arbitrary in can be found by the

equation _

0-pe"F(6-2'4)

We shall designate the reduced flow through aperture with sharp edge

a

Then the flow through aperture /+o
G.= ... T) (k I/ kgtoq,,F /VFa (6-24a)

The formula for the redu"ed flow of gas % on the basis of equations (6-23)

and (6-24) acquires such a form: +4.1 I____-
(k I 2fh-I~Ihii/2';"= •T) •-0,." -- (-'1-)

Values of coefficients of flow IL.,. and , a be taken from Tables 6-1

and 6-2.

There may be obtained a simple approximate expression for qo, asouiing

that the dependence q on e& ats e,.is described by the equation of ellipse:
, a-6_... -- (6-26)

or
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A coAparison between accurate and approximate solutions shows that equation

of ellipse with a great degree of accuracy describes the dependence of the reduced

flow q% on %, for an aperture with a sharp edge,, the same as for a narrowing nozasle.

The difference consists only in the fact that in the case of an norsle a maximum

flow will be attained with the first critical ratio of pressures s. , and in the

case of an aperture with the second critical ratio of the pressures G...

Hence it follows that the effect of the shap, of aperture on the flow may be

evaluated by an appropriate selection of the second critioal ratio of pressures since

it should be expected that the elliptic relationship will be accurate for any

configuration of the walls if it is accurate for the two extreme cases: noasles

and apertures with sharp edges.

"kperiments made for the purpose of determining the flow of air and superheated

vapor through apertures of diffat.-nt shape, confirm the elliptic dependence q% on

% # For a superheated water vapor, second critical ratio of pressures according

to experimental data amounts to u.. 0.23 (Table 6-2). Consequently, with a de-

crease in k (coefficient of isentropy) a.., the same as s. increases. Hence it may

be concluded, that a change of the physical constants of gas exerts an influence

on a.. in the same direction as on ,. . This conclusion is clearly oorroborated by

the data presented in the Table 6-2.

Thus, we see that properties of a stream, flowing from a reservoir, vary con-

siderably depending on the character of the distribution of parameters in the cross

section o& stream. With a nonuniform distribution of parameters of the flow there

are ascertained new propertiesu and the equations, describing the outflow of a uniform

stream, prove to be inapplicable.

We note that the dimensions of the chamber from which the stream flows exerts

A certain influence on the spectrum of stream after aperture. The theoretical

dependence of coefficient of contraction of two-dimensional stream on dimensaons of

the chamber and speed in the minimum section H2,according to G. A. Dombrovskiy is
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presented in Fig. 6-14. The curves show that with an increase of _ (with an in-

crease relative to dimension of aperture) and M2, the coefficient of contraction

increases. Influence of a is reflected perceptibly only at.!- >0,3.
&0 a.

For calculating the aperture or slot at different initial and finite pressures

it is possible to use the method, described above for a nozzle. By proceeding from

the condition of constant temperature in the reservoir, we construct a grid of

relative flows of gas through the aperturs, each curve of which q- corre-

sponds to a constant initial relc'.j're pressure #A, .

0,9

Lo q 4 "6 q8 1O

Fig. 6-14. The dependence of coefficient
of contraction of a two-dimensional stream on
dimnsions of chamber and speed in mini-
mum section according to C. A. Dombrovskiy.

6-4. CaloulAtln of SugMrsonic Nozzle

Supersonic nozzles (Laval nozzles) are used for creating flow. of gas with
supersonic speeds. These nozzles are used as one of chief elements of Jet engines,

and also in steam turbines, ejectors and other apparatuses.

An analysis of one-dimensional flow has shown that a flow with supersonio
speed can be obtained in a tube with minimum section, if in this section there will
be attained a critical speed.* In accordance with this the Laval nozzle is a tube

*There is considered the particular case of an adiabatic motion of gas in a tube
without an energy exchange with the environment. In a general case, the condition of O
a minimum of a section is not necessary for a transition into a region of supersonic
speed.
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of variable sections consisting of two parts. The speed of the gas flowing through

a normally operating Laval nossle continuously increases% where in the narrowing

0part of nossle t6. speed is subsonic, and in expanding portion is supersonic

(Fig. 6-15).

An olomntwr7 calculation of superosoraio nozzle* in mado by the equmtion of

oontinmity, where there should be given the parameter. of gas before nousle, the

7ig. 6-15. Laval nozzle.

flow of gas and the speed of flow in exit section.

-y ignoring the effect of frictions it may be assumed a critical speed is

in the mininim section of noszle. The dimensions of this section are determined

by the equation (6-5); +

The ixit section is calculated by the formula
F,°4. (6(-28)

Intermediate sections of nosslo can be detorminedodepending on the speed or

ratio of pressures from formula for a reduced flow:

1=7 (& 'y (1 -
k+ I O'f(6-9)

where F in the intermediate sectionj

I and s are the speed and relative pressure C = -)corresponding to thin section.

S_ .

*If there is given the distribution of speed. or pressures along the axls

3?I
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of ncssle, then fornula (6.29) determines the profile of nossle. However, such a

calculation of the intermediate sections, and indeed the profile (shape) of norzle A

is appr•ocimate and cannot assure a given distribution of the pressures, since the

speed in the section is not constant either in magnitude, or in directionp and,

consequently, flow i4 not one-d"mensional.

In cases, when it is important to obtain only a given average speed at exit of

nozsle, and the character of distribution of speeds along the section are not of

great importance, intermediate sections of nozzle are not calculated and for simpli-

city it manufacturing both as the narrowing, and also the expanding parts are made

conical. In the narrow section and moreover at the exit the field of speeds

are nonuniform.

In certain caes for decreasing the non-uniformity of the field of speeds, the

narrowing part of noszle is calculated by the Vitoshinskiy formula (6-7). and

aperture angle of conical expanding part is chosen small (up to 32-). Mprionce

shows, however, that these measures are not always adequate for obtaining of the

required field of speeds. S
The best results can be obtained by using a shaped nozzle , whose expanding

part is calculated by method of characteristics, Considering a two-dimensional

nozmle and disregarding influence of friction, we assume that all parameters of flow

remain constant along lines, normal to flat walls. Let us assume that in narrow

section of the nozzle AA' flow has a uniform field of speeds H - 1 (Fig. 6-16).

For accelerating the flow, having in section AA' a critical speed, it is

necessary to enlarge the section of nozzle. For this purpose we shall change the

direction of the wall AA1 and correspondingly A'A '1 bya small angle fron axis of

nozzle aa. Then at points A and A' there will develop weak wavus of rarefaction.

At the intersection of these waves the flow is accelerated and acquires a speed

11, which one can determine by means of diagram of characteristics (Fig. 6-16,b)

or by means of tables.

The state of the flow in the critical section AA I in the diagram of P
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characteristics is expressed by the point (A1,Al') on the circle 1=-I. The speed

of the flow in region 1 is determined at the point 1' on the opicycloid AIt3 jL if

we draw a half-line from the origin of the coordinates at an ang;le of to the

direction of noszle axis 2. Point 2' which corresponds to region 2 of tho flov is

symetrically situated. Through points 1' and 2' passes the cicle, corresponding

to the speed 11,2*

The continuous expansion of ,he gas in stationary waveb of rarefactior,. appear-

ing at points A and A's can 1. replaced by drawing from these points the sound

waves AE and A'l at an t,•leami+ to the direction of axis of nozzle ( •mi is the

angle of sound wave, corresponding to speed of flow in region 1).

In diagram of characteristics we shall find the point 3'1 corresponding to

deflection of flow by an angle -, and we shall determine the magnitude of speed

AA(ANT), corresponding to the direction of sound wave AS'.

In the transition from regions 1 and 2 into region 3s the streamlines intersect

the waves NE and a2 (flow in accelerated) and are turned by an angle of ?, to the* 1
axis of nozzle. Consequentl, in regions 3 the speeds of flow have a direction,

parallel to the axis. In the diagam of characteristics there is readi3y determined

point 3', corresponding to this region of flow,

At points A and A' (Fig, 6-16,a) the walls of the nozsle again change in

direction by an angle of I, . In the transition to region' 4 and 5 the flow is

accelerated and acquires a speed A14.5=1 . Analogously there can be found the

magnitude and direction of speed in regions 6, 7, Spet cetera, and also directions

of the sound waves, which awe boundaries of these regions.

As a result of a suocesive change in direction of walls of nozzle thee will be

formed two stationary waves of rarefaction of finite intensity, during traniition

through which the flow expands and attains given value of the speed.

The speed ),(M,) will be attained within limits of sons of intersection of waves

* of rarefaction in the sector HL. After last characteristic LQ, angle of slopi of
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whtich is equal to

B.LQ~=rsni

flow must have a uniform field of speeds, #' each point of which tba speed is equal

to H', All the streamlines to the right of LQ must be parallel to axis of nosule.

-~~- .....
AA

Fig. 6-16. a) Spectrum of waves of
rarefaction in a shaped Laval nosele

a• and b) Construction of process in a
diagram of characteristics.

It follows frm., thýi that each sound wave from opposite wall, going out beyond the

limits AnL, must be extinguished by a corresponding change in direction of wall at

an angle equal to the angle of deflection of flow in such a wave. Starting from

the point A., wall of nousle changes direction in such a manner that the waves

US, PF# et cetera, incident to it are not reflected.

Thus, in the first sector the walls of noszle change in direction with respect

to axis of nossleg and in the second sector, where waves from the opposite wanl are

extinguished, the slope of wall gradually decreases and at the point Q bo-0. .

At the limit of decrease of 8o , broken wall AA(Q changes into a amoothly curved
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,van.

Near the narrow section, where the speed of flow insignificantly exceeds the

O critical speed, the accuracy of the calculation by the method of characteristics

of first section of nozzle is inadequate, especially if calculating value of ;

is Mall.

The selection of profile of wall therefore is made by starting from a certain

initial section, where flow already possesses a supersonic speed. The distribution

of speeds in initial section should be known.

In certain oases initial section of nosslo is made conical. Angle of conicity

Ve is selected depending upon the given value of )., and amounts to half of the

maximum angle of deflection of flow with an increase of speed from X- I to X.•

Also widely used are the analytical methods of calculating supersonic nossles,

developed by 3. A. Khristianovich and others.

The methods of calculating and profiling supersonic nozzles do not take into

cousideration the influence of viscosity. On wall of nozzle there will form a

boundary laer, the thickness of which increases along the length of nozsle. Let

us note that in aocordance with conclusions of Chapter 5 influence of friction

results in the displacement of critical section, which is displaced to the expanding

eestion of noszzle.

Boundary layer on walls causes a certain redistribution of speeds and pressures

of the flow along the walls and a displacement of characteristic lines. The actual

speeds and pressures in different sections and at the exit of noasle will differ

from the calculated values.

For obtaining a given distribution of speed and calculated value )., it is

necessary to increase area of cross sections of the nozzle$ obtained under the

condition of isentropic flow. An accurate solution of such a problem requires a

calculation of the boundary layer on walls of the nozule (Chapter 5).

The approxmteut solution can be found, if there is known the distribu~lon of
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;drag coefficients along aXi$ of nos,, I.

The specific work of the frict, nhal forces for a tube of variable section

(nozsle) can be presented in the tel]oowing form:
.A.4 0 d

- dx - D
where dx .-.-; D - -•-; D - diameter of throat section of nozzle.

D* D*
The increment of entropy, caused by the influence of frictional forces Is

equal to dS A
dTmjm Rr ji -•'(6-30)

where in the reduced entropy.

OnAte basis of (6-30) after simple transmf-mations we find such axpression

for drag coefficient:

T -1 F +--+T di

In considering that according to formula (5-12)

r, I do

where .,-& is the ratio of pressures of stagnation at entry into nozmzl and in

the given section, we can obtain: k ,ld;

If there is known the form of function -, (Z), then by means of (6-31) there is

readi3y found the change in s. along the lsngth of noszle. The values %-(i. my be

taken from the graph in Fig. 5-32. In accordance with equatien of continuity (2-41)

the connection between sections in real (F) and isontropio VF,) flow can be

presented ase 'I

(6-32)

"where .I, •C# . q. ;qw-i; q And q, are the reduced flows for theorti;cal

and real processes.

Investigations, made under the direction of A. A. Ouklman, theorotically and

experimentally showed the possibility of a linear approximation of law of change
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:of entropy along the length of nozzle.

Consequently, if one were to assume
iS d in ,

then, after substituting in the critical section x - 0 by means of (6-32) we shall

find (1e'i-l )
In Io- In V/9) p!•.

or

a# (6-33)

Experiments show that for nozzles with a polished internal surfaoe it in

possibl, to assume - 0.0.1 - 0.01A.

Equation (6-33) is used for solving direct and inverse problems, In first

case, I() and p are givenj according to formula (6-33) there is established the

reduced flow q(i); the distribution of par~meters of flow along the length of

channel ( i, sp. T ) ii established by tables of gas-dynamics functions. In

* solving the inverse problem by the Ikown distribution of q(x) or A() there are

established those sections in which there are attained the given values A(I)).

The values o(R) in both cases can be found by formula (6-32) (here qt u q).

The influence of friction on the speed and other parameters in exit section of

nozzle is evaluated by means of the coeffioient of speed, which in expressed by the

formula -~~(....)

Where ~ )is the loss factor of energy in nozzle 1
is the ratio of pressures of stagnation at exit and

pot
at entr7 into nossle;

M,9 is the theoretical value of M number in exit section.

From formula (6-34) it follows that magnitude , ambiguously is associated with

the coefflcients T, and r.,. With identical values i.. the coeffioientsyp4idC var;2

deponding upon magnitude of available energy, proportional to Mjt ,
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In F]i 6-7 graphs establishing a connection between a.. and M1 are

Rpesented.

Fig. 6-17. Dependenoe of ooefficient of noumls
speed %. on to and M .

Z-5. Aw~ pnen~gna1 ILYCa•I.Nosslo truder Nonrated Conditiona.

Under operating conditions# parameters and also the flow of gas through a

nom a vay. Here it is essential that ratios of the pressures 8 =-., where

P. is 1/ previousl4 the pressure or the environment, change.

We shall consider the operation of a nosslo with variable modes as a first

approximation, disregarding friction and thermal conductivity. In Fig. 6-3S, there

is shown the distribution of pressures in a Laval nosslog at different pressures

of the environment P.- The curve A09, constructed on basis of equation (6-29),

corresponds to rated conditions of flow in a nosslep with which u , .

We aan•oe that at a constant value of po, the pressure of the environment

varies within the limits P.5 p1• p p, • aAd we shall trace change in structure of flow

both within the nossle•, and also after it. It is possible to distinguish four

characteristic groups of modes of flow,-within the ,xits of each group of modes the

picture of the flow qualitative3y is kept constant.

The first group of modes is characterized by lower pressures of medium A! <& .

In this case at exit section of nosule there is established a rated pressure p
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since the parameters of gas in reservoir, and consequently, also the flow of gas

through nozzle do not change. This is obvious also because in supersonic stream

*the disturbance is not propagated opposite tite flow and consequently the drop in

pressure of medium will not be reflected in exit section of nozule. In whole inter-

radiate section of nozsle therefore the pressures also remain rated. Parameters of

flow change after the nozsle, in the free supersonic stream.

C%

,I -- . ... 7

Fig. 6-18. Diagram of distribution of pressures in a

Laval nossls during different modes (of flow].

In Fig. 6-19, a there are presented diagrams of spectra of stream at exit of

two-dimensional nosslb during a lower countorpressuro. At the anglular points

A ind A, pressure varies from a value of p1 up to P,. The streamlines at points

A and A1 are deflected by a certain angle P in connection with the generation at

those points of waves of rarefaction, which cause an isentropic expansion of the

gas from pI up to P.. Alorg characteristics AC, A 1C and AB, A B in accordance1 11

with properties of rectilinear characteristics, the pressure does not change.

Consequently , in regions 2 there are established a constant speed and pressure

pa' equal to the ambient pressure. Waves of rarefaction AD 1E1A and A1DEA1 emerge

on free edge of streamo along which the pressure remains constant and equal to pa"

In the none OBO1B1 of the intersection of these waves, as is already known, there

occurs a distortion of the characteristics. As a result the angle of sound wave

BD beomos less than the angle of wave A1C andon < .%' correspondingly
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Fig. 6-19. Diagrams of spectra of stream after two-dimensional nozzle

during different modes of flow.

From free edge, the wave of rarefaction in reflected, as a compressional wave,

in passage through which the streamlines are deformed, by being deflected at an

angle S to the axis of stream. At points L and L1 compressional waves emrge on

the free boundary.

After the intersecting waves of rarefaction (in region 3) there is established

a pressure, less than pressuro of envirorment (stream is reexpanded). In region 4

after intersection of compressional waves the pressure rises to a pressure p1 in

exit section of nozzle AA. Towards the section LL the stream contracts and its
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width is equal to the width of exit section AAI. In regions 1. 3, and 4 the stream-

lines are rectilinear and parallel to the axis of nozzle. In regions 2, the

streamlines also are rectilinear and parallel, but located at an angle 8 to the axis

of noszle. For the considered first group of modes with the adopted assumptions,

there are no losses of energy in the stream.

As the pressure of the medium Pa increases, the characteristics AB, E, A1B

S1D1 . OP and 0 1 Echng, their position in the stream. Since, the difference between

pressures in regions 1 and 2 in this respect decreases, then the angles of indicated

characteristics increase and the intensity of waves of rarefaction AD E A and

A DNA decreases. Angles of deflection of streamlines in region 2 also decrease.

Reaching a limit, under rated conditions (pa p Pl)j the characteristics AE, and A IE

merge with the waves AD and A D. The stream acquires formula given in Fig. 6-19,b.

The second group of modes characterizes the outflow from a Laval nossle with

.a higher counterpressure of the medium or with a lower initial pressure ( t, >C, ).

By knowing the rated speed in exit section of nozsle a,, there is readily determined

then the value of pressure of mediw at which in exit section there will form a

normal shock wave [Fig. 6-18 and formula (4-20)1: X I

+1

6-19,c) there also is established a rated pressure pl. If pressure of medium p

comparatively slightly exceeds the pressure p,, then at poJnts AA, there will form

two oblique shocks: AC and A1C, intersecting at point C. The oblique shocks emerge

onto the free edge of stream (after intersection at point C the angles of ablique

shocks increase). In the passage through the shocks AC and A1C the stream.ines are

deflected at angle a, which readily is calculated. In regions 2, the )ressure

is equal to the ambient pressure; the streamlines are parallel to each oth4,v at the

41 frae edge of stream AB and AI. B
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From the condition of symnetry after the shocks CB and CB ,the speed must

becme parallel tb axis of flow, i.e., the streamlines must be turned in the opposite *
direction by-an angle 68 In this region, there is established a pressure, higher

in ccmparison with the pressure of medium. Consequentljy, at points B and 81 from

the direction of stream the pressure is higher, and from these points there are

propagated waves of rarefaction. In the transition through the waves of rarefaction

the pressure drops to the ambient pressureand the streamlines are deflected from

the axis: stream expands. After the intersection of waves of rarefaction, the

pressur. is equal to p10 At points of emergence of waves of rarefaction onto free

edge stream has a width, equal to AA1 The considered group of modes is characterized

by losses of energy in the stream, caused by an increase in entropy in the system

of oblique shocks. Field of pressures along the axis and in the cross sectiorns

acquires significant non-uniformity.

The described scheme of outflow is possible only with a small exceeding of the

pressure pa above pl, when the angle 6 is small. At a certain pressure of the

medium pj"<p,,' 4P, spectrum of stream at exit of nozmle varies. The existence of

a system of two oblique shocks with supersonic speed after the point of their

intersection becomes impossible. At p;opjk angle of oblique shocks, going out

from the edges A and A1 , attains a value, with which in a certain region after the

shock the speeds will be subsonic and spectrum of outflow abruptly will change

(Fig. 6-19,d and e).

For a two-dimensional noszle the deflection angle of the streamline 6.,

(or angle of shock 1... ), with which the picture of outflow will change; it is readily

determined by means of a diagram of shock polars.

Shock polar AK1 (Fig. 6-20) corresponds to a rated spoed x, of the flow in

exit section of nossle (segment 01) and, consequently, in entire region 1 (Fig.

6-19,c). At a certain pressure of the medium pa - pk the speed after the shock

is measured by sector 02 (speed in region 2 in Fig. 6-19,c); the limiting speed
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Fig. 6-20. Determination of mode of flow after shocks,
forming under nonrated conditions in Laval nozzle, by

means of diagram of shook polars.

after oblique shocks CI and CBI in region 3, where the streamlines are parallel to

axis of stream, is determined by sector 03 (Fig. 6-20).

The magnitude of the pressure p can be determined by the formula (4-13):

D2k(2 1, in'Pm k.- (6-36)

In this case in the stream after the shocks CB and CB1 (Fig. 6-19,o) the speeds

will be subsonic.

If 'p,>p'u',, then at the intersection of shocks CB and CB the flow no longer

can be deflected by an angle 61>,,. (dotted line in Fig. 6-20), at which it was

deflected during transition through AC and A C. Diagram of outflow qualitatively

will vary. At exit of nozzle there will form a bridge-like shock.

From the angular points A and A1 (Pig. 6-19,d) there are propagated oblique

shocks AC and AID, changing into normal (or--with a nonuniform distribution of

speeds-c'urved) shocks after which the speeds will be subsonic. After the oblique

shocks OB and DB- the speeds remain supersonic, but the pressure is found to be
I

higher than the pressure of medium ps'

After the normal shock CD, the pressure is much higher thazi after the shocks

OB and DB1 . Consequently, in the stream there in created a complex distribution of

pressures by section: the leveling-off of pressures results in a sharp decrease

of p at the core of stream, i.e., to an acceleration of core which is accompanied

by a decrease of its section. The boundaries CE and DF form a narrowing se:bion of

* core, along which the speeds increase and in the section EF attain sonic v.ilues.
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in addition, internal flow of subsonic speeds immediately after the shock CD is

accelerated by the external supersonic flow. The oblique shocks CB and DB1 are

reflected from the free edge in the form of waves of rarefactions, which also

accelerate the core of stream. As a result the speed of the internal flow becomes

supersonic. The intensity in the change of pressure in a normal shock CD and after

according to data of. A. A. Gukhman and A. F. Gandeibman for two modes of flow,

is illustrated by curves in Fig. 6-21. Experiments corroborate that in very short

sector after the shook the flow attains a rated pressure p1 and correspondingly a

supersonic speed.

Thus, at the pressure of external medium P•>P'u., the system of intersecting

oblique shocks is destroyed and changes into bridge-like shock. This phenomenon

analogously is considered in Chapter 4 with cases of irregular reflection of an

oblique shook from a rigid wall and the intersection of shocks.

With a further increase of pressure of medimw the internal subsonic region

of flow expands, and the external supersonic contracts. There exists such a pressure

of the medium p" , at which a curved shock is propagated almost over the entire

section; in this case, after the shock AA the speeds become subsonic (Fig. 6-19,e),

with the exception a narrow peripheral region. This curved shook is situated close

to the exit section of nozzle.

Pressure p" will correspond to such a mode, with which angle of rotation 6 in
1k

the shocks AC and APD (Fig. 6-19,d) becomes equal to the maximum angle 6,0, (dashe4

line in Fig. 6-20). After determining by means of shock polar the angle Pm, corre-

sponding to angle of rotation 6m, it is possible, 1W formula (4-.13) or (6-36) for

an oblique shook to calculate the pressure p lk

of t

At pressures of the medium p.>p I the shock is normalized and at Pa ' Plk

(formula (6-35)) the shock has to become normal,, being located in exit section

of noszle. Actually as the result of nonuniform distribution of speeds in conical
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nozzles and of the influence of the boundary layer (viscosity) the shock enters

inside nozsle somewhat distorted (Fig. 6-19,f).

If pressure after nozsle pi>p"IA, then in exit section of nozzle the pressure

will vary. A further increase of pressure of medium (pa>piA) causes a displacement

of the system of shocks inside nozzle, as was shown in Fig. 6-19,f.

"From formula (6-36) for the ratio of the pressures at the boundaries of a shock

it foUlows that a definite increase in pressure in shock corresponds entirely to a

given speed A, of the supersonic flow before the shock. If pressure of medium

exceeds the magnitude plk, then, obviously, conditions of equilibrium in normal

shock will be disturbed and it will be transferred to that place in the flow which

corresponds to an equilibri•m position of the shock with now parameters of the medium.

It must be remembered that a displacement of the shock inside noszle is accompanied

by new qualitative changes of flow (third group of modes). The pressure after the

shock in this case is no longer equal to pressure of the medium; it is found to be

less than p a Therefore, after a shock the pressure continues to increase. The

distribution of pressures in the, flow at intermediate positions of a normal shock

is shown in Fig. 6-18 by the lines K Eto.

With an increase in' pressure of medium, the shock continues to be displaced

within nozzle towards minimum section. The relationship between degree of pressure

recovery in the shock and the degree of an isentropio recovery of pressures after

shock varies. In accordance wiLh the subsequent displacement of shock in region of

maller speeds, the ratio of pressures on boundaries of shock decreases, and the degree

of pressure recovery in divergent section of nozzle after shock increases* (see

curves L. 1E , L2 E2,et cetera~in Fig. 6-18).

At a certain pressure of the medium p l the shocks enters into minimum section

or nozule and disappears here. In minimum section of nozzle the parameters of flow

Vlhehre in considered the case of continuous flow after the shock.
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Fig. 6-21. Change of pressure along axiu of
nomile and in stroem after nom lo in modes with
& bridge-like shook in exit section; M- 1,5.
kperizzsnts of MO TaKTI.
KEY: (a) m Hg.
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are critical, but a transition into the supersonit. region does not occur. The line

OE is boundary between subsonic and supersonic modes of the nossle. At Pa>Pi,,

the speeds at all points of nossle are subsonic and we obtain fourth group of modes

of nozsle. For this group there are characteristic successive expansion of flow

in oonverging part and cizapression in diverging section of nozzle. The minimum of

pressure is attained in narrow section. It is known that such is the character of

the distribution of pressures in Venturi tubes used for measurement of gas flown.

As long as pa<Pimn, the flow of gas through noznle during different counter-

pressure is' kept constant (in minimum section of nozzle the parameters of gas are

critical, and the initial parameters remain constant). The change of flow starts

only with counterpressureos greater than pW, i.e., within limits of the fourth group

of modes. In Fig, 6-18 to the right there is shown the change of gas flow through

nossle depending upon the counterpressure Pa.

The magnitude of pressure pl can be determined, if there are known the geometric

* characteristics of nossle and parameters of flow before nozfle. Ignoring the

losses in divergent section of nozzle, it is possible by means of the equation of

continuity to obtain: F.

were q fif-flol is the reduced flow in exit section of nozzle for the mode

under consideration.

On the other hand, q,, can be expressed in terms of the ratio of pressures. Ap.

by formula (6-4); then, remembering that

T

we arrive at following equation for e,:
I h-I I

w h e r t v 
H 

, _-•T. -6.

It is readily seen that equation (6-38) at f " 1 (converging nosule) r', a

root , , and at f,.-'= (noszle is designed for maximum arced
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a . . . . " . . .. . ' ' " . . . '

A )"two root4i , a ..,0..-, The second v&Usa (,,-0) corresponds
to rated coriditions of nosmzlo /,=zo and therefore it is not considered,

The depndence of a,, on + by form•la (6-38) is piresented in Fig. 6.-2.

For 411 there O7 be obtained the simpler formulap if elliptio dependence

betwen q and *o,' is used.

Pig. 6"22. aximum ratio of pressures in

nossle @I, depending on 1,

Acoording to equfation (6-12) it is possible to write outt

hence

-. +(I -,) (6-9)
In equation (6-,39) it is possible to introduce the correction whioh takes into

consideration lossres in divergent section of noosle, In this coae
, -- r (6-39a)

where at.*f, .
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From equation (6-39a) it follows that with an increase in. losses in nozzle, the

magnitude of the maximum counterpressure p i decreases.

In dotermining ek,, with a consideration of the losses it in possible to use the

graph in Fig. 6-22, plotting along the horibontal axis the magnitude

We now turn to a consideration of certain peculiarities of third group of modes,

with shock waves within nozzle. It is necessary to consider that in reality in

nozzle there is created not a normal shooks but a complex system of curved shocks.

Of great importance here is the shape of expanding portion of nasale. At small

aperture angles of expanding portion in nossle there appear shocks close to the

normal in shape. Near Oho walls of nozule there occurs a branching of the curved

shoolcacquiring the shape of a bridge-lke shock (Fig. 6-190f).

The third group of modes is characterized by significant losses of energy.

Equally with the wave looses in the shocks there appear losses owing to separation

of flow from walls or nozsle. The separation in acoompanied by the formation of

vortices and by the characteristic suction of gas from the environment.

In a number of oasea% of praotical interest is the doterminat on of position of

shock inside nouile and of losses in nassle with a given ratio of pressures. Since

the structure of the shocks depends on the shape of divergent section of nossle,

then such problem cannot be accurately solved. An approximate solution can be ob-

tained for simplest caso, assuming the shook noruaL and flow in nozzle nondetaohed.

The problem is solved as follows. Before the shock, the expansion of gas

follows along the curve AOD (Fig. 6-18), corresponding to rated conditions. Para-

meters of gas at entry and in sections K are associated by equations of isentropio

flow. The change in state in section K is determined by the formulas of noiaal

shook (line of process K, L j, t cetera). Finally, after the shock it is possible

to wie data, characterizing losses in the diffuser (Chapter 7).

Let us assume that a normal shock appears in certain section of nozle F ck"

Fron the oquation of continuity there can be obtained the known relationshit:

339



I, ,, .7(r..o

n '1i ' ./ t , I ( , .4•L a m ;"i i i" -

where k is the reduced flow before shook.
From fomula (6-40) it I. possLble to express f• in terms of aCE or by

moans of equation (6-4) in tormis of ratio of pressures .a .. The reduced flow

in the same section after shook is equal to&

, !j (6-41)

Here po" is the pressure of stagnation after shook,0
Frcm the equation of continuity for seotions Fok and F1 we shall obtain:

wher• qIk and qare the reduced flows after shook also in exit section with.&
ck

given pressure p,

Ps- is the change in pressure of stagnation in divergent section of nou1.le
after shook.o* 1

Then by sears of equation (6-40) we obtain:
- I.. "flo, amh ••,(•I " .

where ao, Co the change in pressure of stagnation in the shook.

Substituting in equation (6-43) the values %k and q, we find:

(6-44)

Hereu s~ in the relative pressure afber-nossle;

'If we disregard the losses in nossle before the shook, then

, a ,

*The values saA can be taken according to experimental data, presented in
Chapter 7.
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Ratio of pressures of total stagnation in a shock is determined by equation

(4-35). Formula (6-44) with the substitution " from (4-35) become very cumbersome;
IN

significantly more convenient to use is equation (6-43), which contains tabular

functions of the isentropic flow and of a normal shock. Deing given the magnitude

qI from q. I to 9c •4 - e find by formula (6-43). After determining
ck

by tables the corresponding values of' ! , we shall find the magnitude q -k

An evaluation of the ioefficient s ie made after calculating q%

( .• an •d • Then, there in determined the magnitude q W , KnowSP.

In& #A and s , we finds
"NPa

Thus, it is possible to construct the dependence f., on % for different,

but constant values ,m=m. . At u,'='era the shock is located in the throat of

noule and 1e,.=I. At * l the shock is found in entry section of noeule.

An analysis of formula ('-4) shows that in interval of changes 10 from I

to 2, the dependence f,* on % my be expressed by tlhe approximate formula

O/k -A(o,- _.%)+1,. (6-45)

whiore A is a dimensionless coefficient, depending on 1,.

After calculating I. by formula (6-4), it is possible to determine and

1 (or a') and f ind then loss factor of energy in shock in determined

by the formula (4-33) or by tables. Loss factor in expanding part after shock is

determined by the formula 2. __ 2 1 1-

The coefficient of total losses in nossle in modes of the third group is equal

to: M;!

where Mis the dimensionless speed, corresponding to a ratio of pressures Pa

With a consideration of separation of flow3 the losses and position of Ahock

* will dif fer from the calculated in the indicated manner.. The separation of flow
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A after the shook results in a sharp'increase of losses.*

Results of an experimental investigation confirm the indicated peculiarities

of flow in nosele with unrated conditions.

Thus, in Fig. 6-23 there is presented the distribution of pressures along

nossle during different modes. The dashed lines show the results of calculation

made by the above-indicated method. With decrease of aperture angle the computed

curves approach the experimental. However, the coincidence of the calculated with

the experimental is not entirely satisfactory. The increase of pressure at the

location of shock occurs, although very intensively, not in a discontinuous

manner. Consequently, only at very small aperture angles, shooks, corresponding

to the third group of modes, are close to the normal, The experimental fact that

the location of shook in nozmle depends on the means by which nozzle mode varies

also deserves attention: by the change of initial pressure pc or counterpressure

pa. This result is explained by influence of Recytolds number during interaction

of a compression shock with the boundary layer.

The graphs in Fig. 6-24,a show** that the pos tion of system of shocks in nozsle

.,,9

Fig. 6-23. Distribution of pressures in Laval nozile with
different modes and at different angles of aperture y. - 180.

*The effect of separation on the position of shock can be evaluated experi-
ientally; in equation (6-45) it is possible to introduce experimental values of the
coefficient A.

**Aocording to the data of Oswood eund.Crosso
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Fig. 6-425. Spectra of flow in a two-dimensional. supersonicI
* ~nossls under nonrated conditions.* Parameters of rated *94e:

0.052; -2.57; aperture angle of nozhle Y, - 190401.
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depends on the basic geometric parameter f,==- and the apertwre angle yc . With

an increase of Vc the system of shocks with the same ratio of pressures eL is dis-

placed towards the minimum section.

The rolative pressure after the shook Igh does not depend on 7. (curve 1 in

Fig. 6-24,c) (points with different Y. lie on the same curve).

The change in position of shock depending upon calculated differential of

pressures in nozzle n, (or the same on /,) and the ratios of pressures in exit

section (p,) and environment (P.) are corroborated by graphs in Fig. 6-24,b.

At the same time the experiments confirmed that in modes, corresponding to

the distribution of shocks in exit section of nozzleathe pressure in this section

(and speed before shock does not depend on the aperture angle T, (curve

2 in Fig. 6-24,c). The ratio of pressures ,,-_ -"-differs from the calculated onlyp.

by a magnitude che.racterizing the frictional losses.

The gradual development of a spectrum in a two-dimensional nozule with the

aperture angle of expanding part Y, - 190 40' is shown in Fig. 6-25. At pressure

in medium p,,>p,#> , (the third and second groups of modes) inside nozzle there

appears a system of shocks. Closing this system is a shock of snall curvature

04 ,

9 4_ . .5.

Fig. 6-26. Diagram of nonrated modes of Laval nozzle (after B. Ta
Shunyatakiy).
MYE: (a) Region of subsonic modes; (b) Region of normal shocks wit-,in
nossle,- (c) Region of curved shocks; (d) Region of three intersectinig
shocks in the flow: two normal plus one curved shocks; (a) Region of[

S~two oblique shocks intersecting on axis.
(Fig. 6-25,a) after which the speed in subsonic. In certain modes there are

,14,



Iscertained oscillatory motions of flow after point of separation (Fig. 6-25,b).
With the lowering of pressure of medium Pa the shocks advance from the critical

to the exit section: at a certain pressure inside nozzle there will form a system

of intersecting oblique shocks (Fig. 6-25c) which with lowering of presiure of

medium is transmitted to exit section of nozzle and emergos into flow (Fig. 6-25,d).

Operating conditions of a two-dimensional supersonic nozzle without evaluatinz

the influence of the boundary layer can bo deterAined by means of the diagram

constructed by B. Ta. Shunyatskiy (Fig. 6-26). Along vertical axis here is plotted

the relative pressure, and along the horizontal-the rated M number for a nozzle.

If there is known the ratio of pressures #,, and the rated M number, by using

the diagram, it is possible to establish in what mode a given nozzle will operate.

Curve A corresponds to rated values of Al'the points, lying below this cr've,p.

belong to modes of the first group, when in the nozzle section there will form a

wave of rarefaction. Curve B corresponds to the limiting case of two intersecting

shocks [formula (6-36)]. Between curves A and B there is located a region of modes

with oblique shocks in the nozzle section. Curve B corresponds to the case of a

maximum ratio of pressures after the first oblique shock [formula (6-37)). Regions

between curves B and C correspond to modes with bridge-like shock in the section.

Curve D corresponds to a normal shock in exit section of nozzle [formula (6-35)].

Modes with a curved shock are located in region between the curves C and D. Above

the curve D is a region of direct shocks inside nozzle. The upper boundary of this

region is curve E, and the lower-curve D. Values of ,correspondin to curve E,

determine the modes with which shocks in nozzle disappear (normal shock is transferred

to minimum section of nozzle, where H=).

The diagram in Fig. 6-26 is constructed on the assumption that the flow in

nozzle and stream is two-dimensional and symmetric and the flow is continuous.

Results of experiments, presented in Fig. 6- 24,c, show that ratio of pressures,

corresponding to position of shock in exit section of nozzle, with satisfactory

accuracy can be determined by the formula *l- "0-----. 0
0.
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Losses of energy in two-dimcnsional Laval nozzles during different modes can

* be evaluated by Fig. 6-27. Here by the dotted line there are plotted the coefficients

of wave losses in compression shocks and of loss factors in expanding section of

nozzle. The curves show that in modes of the third group, 4hen the shocks are

located near the minimum section, losses in the diffuser after shock (frictional

losses also owing to separation) acquire major importance.

eAec

Fig. 6ý27. Losses of energy in two-dimensional LAval
nossle during different modes.
- experimental; -wave losses (calculation) and losses
in expanding part.

6-6. Conical Leval Nozzles under Non-rated Conditions.
Reaction Force

The outflow from art axially symmetric nozzle under rated ai unrated conditions

possesses a number of peculiarities.*

We shall consider at first the results of an experimental study of the spectrum

of flow after nozzle dur- ig outflow into medium with lower pressure (first group

of modes).

On edge of exit section AA1 (Fig. 6-28,a) there will form a conical wave' of

rarefaction, and the pressure falls from p, to pa. In the core of flow the pressure

drops to a lower value. As a result there appears a transverse gradient of

"01hese questions are partially discussed in Sec. 6-2.
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"preSure, directed inside the stream. The expansion of the flow in the conical

wave of rarefaction results in the deflection of the streamline from the axle and

causes & corresponding deformation of the external boundary in the sector AD. In

the sector DC the edge of stream under the influence of the difference of pressures

A ,

C,)

AL

Fig. 6-28. Diagram of spectra of stream after

conical nossle during different modes.

(pressure of medium is higher) is deformed in opposite direction-stream is compressed

(Fig. 628•,a). All the weak waves, going out from the adge, will form with it an

identical angle (pressures, speeds and temperatures at all points of boundaries are

identical). The characteristics converge towards the axis of flow. As is known,

convergent characteristics will form a curved shock. In ease of an axially
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symmetric flow such a shock has the shape of a surface of revolution with a

curvilinear generatrix.

The shock ANB1 A (Fig. 6-28,a) may be generated not at exit edge of noSzles, but

at the core of stream, at a certain distance from its boundary.

With a significant deflection of the mode from the calculated ( pa 'pj ) the

shock emerges directly from the edge of noszle. On axis of flow there appears a

nor*mal shook BB1, after which the speed of flow becomes subsonic. Consequently,

with a lower pressure after the nozzle in this case there appears bridge-like shock.

The curved shock CBB C in the external supersonic region is a continuation of

the shock AB1IA1 . The stream contracts up to that section, where the shock OBB C1

emerges onto surfaue of flow, and is reflected in the form of a wave of rarefaction.

Farther on the stream again expands. From its boundary there emerge sound waves,

intersecting at the core of flow. As a result here there will be formed a conical

shock EI FF enclosing the wave of rarefaction CS 1C1 and emerging onto surface

of flow at points F and F1 . As the pressure of uadium increases the system of

shocks at exit of nozzle varies littlesand under rated conditions after exit section

there are maintained two axially sye, tric curved shocks (Fig. 6-28,b). With a

further increase of pressure of medium (second group of modes) the shape of edge

of flow changes. After the first shock the streamlines are deflected from axis

of flow (Fig. 6-28,o0).

Thus, for conical noszle, first group of modes continuously changes into the

second without essential qualitative changes of spectrum of flow within stream. In

distinction from a two-dimensional nozzle in conical nozsle during all modes, shocks

generate in the stream.

If aperture angle of nozsle is small, then under rated conditions there are

absent the internal normal shock and subsonic core. With a higher counterpr (tssure

of the medium, the system of shocks again is reconstructed: two cone shocks are

eonnticfed by a normal shock, and the internal part of stream becomes subsonic. An
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increase in counterpressure results in an expansion of the subsonic region and

correspondingly to a contracting of external supersonic flow (Fig. 6-28,d). In

'this group of modes axially symmetric stream also has a nimber of peculi&wities.

The curved shocks AB and A1B1 branch at points B and Bl, as they form the already

known bridge-like system. In region 3 there is established a higher pressure and

in section CC shook BO C1 is reflected in the form of wave of rarefaction. However4

in this came reflected characteristics are curvilinear.

Characteristics, going out from free boundaries CF and C13 1 , intersect. As a

result, as in the case indicated in Fig. 6-28,a, wave of rarefaction from points

o Wan C1 is terminated by shook OD (0C1D 1). In the sector to right of second normal

shock, located on axis, the flow is accelerated and becomes supersonic. Further

process in repeated.

The subsonic core of stream is detected during all modes, different from the

rated. However, u in all analysed cases abovejthe extent of the subsonic core

is small. The external supersonic part of stream accelerates the internal part so

that already at a small distance after the shock BB1 (Fig. 6-28,0 and d) flow on

axis attains supersonic speeds. On axis there will form a Laval nozzle, the

edges of which are the boundaries line BQ and B1 Q.

For an the considered modes a characteristic peculiarity of axially syrmetric

stream is different curvature of its edge, of the internal streamlines, shocks and

waves of rarefaction. Actually, as already indicated in Chapter 4, during transition

through cone shock the streamlines immediately after the shock are distorted, where

their curvature is variable along the shook. If an axially symmetric shock has a

curvilinear generatrix, then the curvature of streamlines increases. The streamlines

are distorted also during transition through conical wave of rarefaction.

The shape of diverging section of nozel exerts a significant influence on the

spectrum of stream after nozzle. Experience shows that in a correctly shaped

axially syumetric nossle shock waves after exit section generate only with large
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deviations of modes from the rated ( p, -<p ). In a rated mode and with insignificant

deviations it ( Pa<Pt ) eosule operates without compression shocks in exit.

In conical nouslea shocks in the stream are detected during all modes. With

an increase in aperture angle of diverging part the intensity of the shocks and

their curvature increase. At a large aperture angle at exit of nousle under rated

conditions there is generated a bridge-like shook (Fig. 6-29).

The diverging part of nonshaped Laval nosmles is made as a rule, conical with

a small aperture angle, equal to 8 to 120. Under rated conditions the flow of gas

Fig. 6-29. Spectra of flow in stream after
axially syimtrio Laval nossle. Rated
characteristics of nosele, 1 1.2; 'ft -

0.0661 Af - 1.8
a-- 0 " 0.546; b-.. 0.04; c- so=- 0.16.

in nouele can be continuous also it significantly larger aperture angles.

The magnitude of critical aperture angle of a two-dimensional noesle, corre-

sponding to a continuous flow, under rated conditions can be readily determined

by the diagram of characteristics (Chapter 3) or by mans of tables (see Appendix),

O if the rated value ýj, is given. The anglo of nomsle must not be larger than the
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s3 t oefleeton in us" of rarefaction during acceleration of flow from I,-I

At the smo tim the increase of aperture angle exrts a significant infl~onoe

so the structure of flow in floss is under rated and unrated conditions.* As the

bps'twe angle increases the magnitude of negative pressure gradient in divergent

pWt Wnreaseso nonuniforinity of the flow increases along the axis and in the outlet

Fig. 6-30. Diagram of location of *hooks in LaYal nouule
4ith a large aperture angls.

Owee have been presented the spectra of flow in a two-dimensional nossle with

a9 Wmg aperture angle, * perience shows that also in conical nosse 1. with largej

~sprtu a"gloes, there wae detected analogous qualitative changes of the spectrum *
Diagres of displacemnt of system of shocks within conical non. lee with different

midas $a> #14 t presenteod in Fig. 6-30.

Thu the characteristic modes 'of a supersonic nommls with Uarge aperture angle

omnot Wo determined by formulas presented in preceding paragraphs. For such a

mossle the values p, 0 i and p"s are lower then for a noss is with small angle

J,. ad consequentlys the transition into third group of modes occurs with smaller

ehangs of the initial or the final pressure.

to Fig. 6-31, there are presented the losp factors for several WA127.

$mottle baceslee.

Mmesee it my~ be concluded, that minmUm losses correspond to a mode of outflow

oleso to the rated, With an increase in ed the losses in nousle abruptly increase

sad att4Jfl a mawtim magnitude near critioal value v~.O5 to065zt tl

Uarger values of Uthe losses decrease. Such a character of curves C, is explained
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by change of wave and vortex losses in nozzle for second and third groups of modes.

Theoretically, the change of losses must occur only at s. ýv 1. However, as

Fig 6-31. Curves of loss factors : depending on

@and Ie.

experience shows, an increase of losses with an increase of ', occurs at smaller

values of 1. T increase of pressure in the system of shocks, appearing at points

A and A, during ,a6< a, are propagated through the subsonic part of boundary

layer inside nousle and result in a redistribution of the parameters in exit section.

The maximum wave losses correspond to the mode s d= ,h* As the shocks within the

nozsle (,#>sk) are displaced, the wave losses decrease and the vortex losses

increase. In nozsles with a small aperture angle, when the shook approaches the

critical section, the separation of the flow has a local character. At a small

distance after the shook the flow again approaches the walls of nouzle and the vortex

losses decrease. Therefore, the loss factors begin to decrease. In the modes

Sim the wave and vortex losses in nozzle are absent. (Venturi tube modes);

losses of energy occur only from friction. As can be seen from Figs. 6-27 ind 6-31,

with an increase of I, the losses in modes of third group increase and

the region of maximum values of Ce is displaced somewhat towards the larger a values.
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It should be emphasised that the total losses in noszle are significantly greater than

the wave losses during the given mode s . We note that the character of the

curves •---'. (s.) remains identical for two-dimensional and axially symmetrical

nosulesj however, the absolute values of C differ somewhat.

In Fig. 6-31 the values of flow coefficients I, also are indicated.

- - ' . . ..

Fig. 6-32. Diagram for deriving formula for
ocmputing reaction (force) R.

lAval nossles are widely usid in Jet engines. In this connection we shall

dwell briefly on characteristics of nouules necessary for calculating the reaction

force.

For doterimning the reaction force, under the action of which there is realized

the flight of a jet aircraft, we shall uso the equation of momentum. For

this purpose we shall describe around the apparatus a closed cylindrical surface

abd all elements of which are remote at a fairly great distance (Fig. 6-32).

Perturbations, created by apparatus on the defined closed surface, will be infin-

itely weak. We shall write out the equation of momentum in a projection onto

x-axis (Ruler equation)

p -dF - .4,(c.--c1 )dG +--.•cdr.o 
(6-46)

Here p,. is the pressure of incident flow in the section a-b; p., c, are the

pressure and speed of flow after apparatus in section c--d; F is the area of sections

a-b and -- d; 0,/g -mass of air, per secondflowing into contour; O0,1 -mass of



fuel being given to motor: R is the reaction (force).

Since the sections a--b and c--d are located at a long distance from the

apparatus, then - In this case, forces of pressure in indicated sections

are compensated everywhere, with the exception of the sector equal to area of exit

section of nozzle Fl. Speeds of individual streams, enveloping the apparatus, also

differ little. After designating aa as the exhaust velocity from nozzle; pI as the

pressure in exit section of nozzle F1 , from (6-46) we shall obtain:

oa or re
(I -' cI d.+ c.ddGr.. .. (p, - p,) 6F,'

R 9=- a(c,-c,)dO,+.( (6-47)

For an immobile apparatus, not using atmospheric air, from formula (6-47)

we findt Cdo i,R- I adG}jS(p, -Pa)dF,,
S (6-48)

where G is the flow rate, per second, of the working medim.

At average magnitudes, formula (6-48) can be written as:

Ca 4 .c,-- (,o, -- ,,) Pi.
After having replaced here

2

C 4 =PIC' F, k),At' F, :--k

Finally we obtain:

R - k (--)'P.2zF. + (p, -- p.,) F,. (6-49)

let us note that the additonal term in equation (6-49) is introduced only for

first and second groups of operating modes of nozzle, i.e.)at supersonic exhaust

velocities.

With higher counterpressures (Pi>P2) the reaction (force) decreases, since

the difference p2 -p, is negative. Converasey, with an expansion of the stream

afteor nozzle the difference (p 2 -- pI) is positive and R increases.

If the shocks are located within nozzle, then the outflow occurs with subsonic

speeds (l,•=p,), and the second term drops out. The change in reaction (force) in

thin case is caused by the deceleration of the outflow, which should be determined
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with an evaluation of losses in the system of shocks and in divergent section of

nozzle.

The reaction (force) is conveniently presented in dimensionless form. For this

purpose we divide (6-49) by the magnitude p F1 . After simple transformations we

obtain:
+--" + ,/ p (6-50)

For evaluating the effectiveness of nozzle of a reactive apparatus sometimes

there is introduced the concept of coefficient of thrust

where R, R8 are the reaction (forces) in actual and theoretical (without loss in

noszle) processes.

The connection between R. and Rt can be found in such a form:

==--- 0 , - 1f' " , = jLR,

where c, is the equivalent speed: +

0

0 Gt are the actual and theoretical flows through nozsle;

Olt is the theoretical exhaust velocity from nozsle.

Consequentlyy, T• = r,?,, (6-52

i.e., aoefficient of thrust is product of the coefficients of the flow and speed.

Characteristics of 9 R according to axperiments of F. Stepanchuk are indicated

in Fig. 6-33 for nozzles with different parameter of I, and for various aperture

angles.

In modes of first group ( #,<e& ) the magnitude ?• is virtually cornstant. In

third group of modes, when the system of shocks enters into divergent section of

nossle, the magnitude YRdrops in connection with development of significant wave

and vortex losses. Kinimum value of ?R sharply decreases with an increase of fl.

This result is explained by the greater intensity of shocks and increase of losses

in diffuser after shocks in nozzles with large f,.



Ia f

Fig. 6-33. Variation of coefficient ?Y R-- depending on

mode ( 'a ), the relation f1 and aperture angle of nozzle 1c.

For angles Y. - 320 to 240 characteristics of the nozzle* coincide. A further

iOncrease of Ye results in a sharp decrease of fi for the third group of modes.

At l- 480 on the curve vx there appear two maxima, the first of which corre-

sponds to the rated conditionsp and the second-operating conditions of noxale, as

ordinarily convergent (Fig. 6-33). This means that at large "(, the separation of

flow in modes, correspondina to the third group, occurs close to the critical section.

hxperiments have confirmed that the value a., with which in expanding part there

will form a separation, depends considerably on fhe aperture angle and increases

with an increase of (.

Thus, in nozzles with aperture angles Tc> 5 to 8`0 in the modes of third group

there appears a complex system of shocks. In accordance with data of the experiment

most frequently this system can be approximated by two oblique or cone sho':ks

intersecting on axis. In this case for calculating the third group of opei-ating

conditions of nozzle, it is necessary to know angle of oblique shock depending

on , . At A large aperture angle, when flow after shock Is det.. id,

it is possible to assume that p,, . According to known values of HMck nd -P
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there is readily found the angle of shocks •, If after a shock a separation will

!not form, then the problem can be solved by trial and error.

6-7. Supersonic Nozzle with Oblique Section

Under rated conditions the outflow from a supersonic nozzle wi,ýh an oblique

section occurs with small changes of spectrum of flow. These changes are caused

by the effect of boundary layer on wall of oblique sect'un KA (Fig. 6-34).

Under unrated conditions, when the pressure of medium p, is less than the

rated (model),, an additional expansion of the stream occurs in the oblique sect!.on

or after its limits. If angle of first characteristic is smaller than the angle

of oblique section, then the expansion of flow occurs beyond the oblique section

(Fig. 6-34,a). In this case, edges of the nozzle A and A1 create stationary waves

of rarefaction intersecting not on axis of stream, but in a region, lying closer

to edge A. For this reason, the symmetry of spectrum of outflow is disturbed and

the stream is deflected from axis of nozzle. Waves of rarefaction are reflected

from edge of stream, as compression waves (BCD 1 and BIC1D), intersecting close to

opposite boundary. In zones of stream 2, adjoining the boundary, pressure is equal

to external pressure P., in zone 3 (after intersection of waves of rarefaction) the

pressure is lower, but in zone 4 it is higher and equal to pressure in oblique section

of nozzle pl.

At the intersection of the asymmetrically located systeM of waves, angle of

deflection of streamlines vary from sectiun to section. Correspondingly the mean

angle of defle.tion of stream varies.

If the first wave of rarefaction from point A partially or completely lies

within lWits of oblique ssctiai, then character of the flow changes (Fig. 6-34,b).

The wave of rarefaction reflected from wallofoblique sectLon (partalaly or entirely)

results in a lowering of the pressure, and along the edge A pressure is found to

be lowsr, t han P" As a result at point A thero •11 formt an oblique shock wave;

3
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Fig. 6P-143. Diagram of selctra of stream after'
nossle with oblique section.

the system of waves changes and the angles of deflection will be already different

in comparison with the first case. In the oblique shook AD the streamlines are

deflected clockwise, therefore,. the mean angle of deflection of stream somewhat

increases. Such a character of outflow will take place in that came, when &"tI* of

oblique section. <arcsin .

For tho second group of modes (pressure of metitm is higher than the calnulated)

on the edges A and Al there appear oblique shocks (Fig. 6-34.). iLntersecting

after oblique edge, if angle P, of shook fro& point A 1 is smaller than the ang3e

of oblique section q . Intersection point of the shocks B lies along upper edge

eof stream. The flow is deflected from axis of stream, passing thresgh an
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.symmtric system of shocks and reflected waves of rarefactionj here the deflection

of flow occurs in & direction opposite to the first case. Let us note that for

first group of modes (p,,.;p), turn of stream occurs with respect to the point

A, and at -Pu>Pi (second group of modes) stream turns with respect to the. point

A1. Angles of deflection of streamlines and, consequently, also of entire stream

change along flow, just as in first case, owing to the influence of the reflected

If j<p• (Fig. 6-34,d), then first oblique shock lies within liits of oblique

seddon. In reflected shock HB1 the pressure increases to a value, largpr than p

As a result, in the sector HA and in region LAKB1 pressure is higher. Prom points

A and B1 there are propagated waves of rarefaction AC1D1 and B1 BC. In sone 2

there is established the pressure pa. In zone 4P the pressure is equal to p1 , and

in sons 5 (after intersection of reflected compression waves) the pressure again

in higher. Further the process is repeated. It is readily noted that the average

angle of deflection of stream in this case may be increased. With a further increase

of counterpressure, the shock A H will be deflected toward section A K. At a csr-
1 1

tain value P,,=PI'Ih a normal reflection of the shock A1 H becomes impossible, since

speed after primary shock is close to the speed of sound. The shock acquires the

form of an ).-shaped shock A1H71 (Fig. 6-34, b), and on oblique section along wall

HA, a separation of the stream will form.

Fig. 6-35. Spectrum of flow after Laval nozzle with
oblique section(wave of rarefaction within limits of
oblique sectiu..

If PJ•PiA, ion bridge-like shock is located in section of nozzle AiHlqand

the spectrum of stream virtually does not differ from that considered above for a

nozale with a normal section.
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Calculation of spectrum and the determination of mean angle of deflection

at exit of nozzle with oblique sectoncan be made by the method of characteristics

(modes I ) in combination with the method of shock polars, if pu>Pi (modes II)

An approximate evaluation of the angles of deflection can be realized also

by simpler methods, presented in Chapter 8, by means of equations of continuity of

momentum and energy.

xperiments confirm the above considered spectra of outflow from Laval nozzle

with oblique sectan. In Fig. 6-35, obviously visible is the wave spectrum of stream

after oblique section.

Let us note that deflection of stream in oblique section causes a change of the

reaction (force)s the calculation of which should be made by a revised formula

which takes the deflection of flow into aocount.

0.{
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CNAPTER 7

MOVEMNT OF GAS IN DIFFUSERS.
STAGE OF EJECTOR

7-1. Main Characteristics and Design of Diffusers

In diffusers occurs the conversion of the kinetic energy of flow into the

energy of pressure. Equations of one-dimensional flow (Chap. 2) show that such

a process at subsonic speeds can be realized in a pipe with cross-section increas-

ing along the flow.

The flow of gas in a diffuser is characterized by positive pressure gradients,

the presence of whi h creates conditions for intense build-up of the boundary

layer and in a number of cases of flow separation from the walls.

The influence of the positive pressure gradient on the structure of the

boundary layer was considered in detail in Sections 5-11. Graphs in Fig 5-29 and

5-30 show that with increase of the positive pressure gradient (parameter I'<0)

the momentum thickness 6** abruptly increases and the filling of the velocity

profile next to the wall is decreased.

At significant pressure gradients in the diffuser, can appear separation

(Chap. 5). In this case energy losses abruptly increase and the diffuser does not

provide the given increase of pressure.

The main problem of design reduces to establishment of the optimal form~ of

the diffuser, corresponding to continuous flow and a minimum of energy losses at
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the given regime parameters (numbers Re and M) and conditions at the entrance.*

With this aim is chosen a diagram of the distribution of pressures along the

* ' diffuser, which gives the least intense growth of momentum thickness to the exit

section and does not lead to separation of the layer or displace the separation

to the exit cross-section. Such a problem can be solved by means of variarit cal-

culations of the boundary layer by methods set forth in Chap. 5.

Having selected a rational distribution of pressures, it is not difficult to

calculate flow areas, establish the form of the diffuser and determine the magni-

tude of losses in it. In the case when form of diffuser is given, the distribu-

tion of pressures along the axis is calculated by the channel method (Sections

3-5).

In practice of calculations, it is

accepted to consider the losses of ener-

gy in diffusers as the sum of two compo-

inents losses due to friction in the

boundary layer t,-rp and expansion losses 15

• * In meaning, the quantity ýp
Fig. 7-1. Diagram of diffuser.

characterizes losses caused 'by the tur-

bulent character of motion in zones of separation.

It is assumed that the considered losses are analogous to losses during sud-

den expansion of flow, when during transition from the narrow part of the pipe

into the wider part, the boundary of the stream disintegrates and swirls into vor-

texes. For the maintenance of turbulent motion is expended part of the energy of

flow. As a result the sudden expansion is accompanied by a loss of pressure, and

the loss factor for an incompressible fluid during sudden expansion (shock loss)

*That is, the length, form and roughness of walls of the entrance section of
the diffuser, the initial degree or turbulence of flowdistribution of velccities

* along the section,and so forth.
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can be determined by the formula

CIA a J

where f - F2 is the expansion ratio of the diffuser Cl-the section of the

entrance and F2 is the section of the exit of the diffuser (Fig. 7-1)7.

The corresponding loss of pressure is expressed by formula

AP. 2 Pell. ,e..-r.,,= fell, F,'• (7-2)

where p2. is the pressure after sudden expansion during the absence oi losses;

aI and c2 -- velocities in sections P1 and F20

In the diffuser (Fig. 7-1) the losses of energ and pressure caused by

expansion of sections will be less, since the sections change gradually.

Ratio
Ap:,

(7-3.) 0
where Ap -loss of pressure in the diffuser, is called the coefficient of shock

softening. Consequently, the coefficient '1 is the ratio of losses of pressure in

the diffuser to losses of pressure during sudden expansion.

S~I 1u: Il

Fig. 7-2. Coefficient of shock softening, depending upon the aperture
angle and the paraneter f for diffusers (-round

cross-section; -square crossmsection).
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As can be seen from Fig. 7-2, the coefficient P depends weakly on the ratio

f PF2 and the shapes of the section, and mainly is determined by the apertureS F,

angle of the diffuser YA

The use of coefficient ' for design of diffusers is formal and can be justi-

fied only by the fact that the detected losses in diffusers turn out to be larger

than frictional losses determined for non-gradient flow..

Indeedt during calculation of frictional losses, as a rule, the known for-

mula (Chap. 5) is used:

pe dx
AM T Vx (74)

with coefficient : , determined by one of the known formulas for non-gradient

flow, for example by the formula of Blasius:

AI,3164Re . (7-5)

Iere c*-velocity on the axis of the diffuser; dx-element of length; D-

diameter of cross section of the considered section and

Re Et.- (7-6)

-- Reynolds number.

The value of the absolute frictional losses calculated by such a methodI turn

out to be significantly smaller than experimental values, even for continuous

flow, since formula (7-5) does not consider the influbnce of the pressure gradient.

Losses in diffusers of any form for continuoun flow can be calculated with

use of the theory of the boundar7 layer; for example by the method of A. To.

Zaryankin, based on the application of the concept of energy thickness.

For conical diffusers by means of certain simplifications by it is obtained

a formula for the loss factor in the following form:
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, .,. . .

Using this coefficient, it is possible to calculate losses of pressure in

the diffuser:

AAo,- =P21,- .,-- :, CAI
• ~Z~p3CT. (7l-a)

We will compare the results of calculations by the formula (7-7) with data

of the experiment,

From curves of losses in Fig. 7-3 it follows that losses in aiu isogradient

diffuser* are significantly greater than in a conical one. All diffusers had one

and -the same expansion ratio f - 2.25. The change of losses depending upon the

.,mmber M•<0,8 shows that with growth of velocity, losses are somewhat lowered.

Poweverp everywhere the value of losses in the isogradient diffuser are approxi-

mately 3 times larger than in the conical, which indicates the separation charac-

ter of the flow in it. S
Evaluation of losses by the formula (7-7) for conical diffusers at M1 - 0,7

gives 565 0/0 for *'A -100 and 5 c/o for 'UA - 6o0, Theme values of At practically,

' l

Fig. 7-3. Change of losses in different diffusers depending upon the
nuber MI.

KLf: (a) lsogradient diffuser; (b) Conical diffuser (7A - 60)1 (c) Conical
diffuser (L - 110).

*Diffusers with a constant value of the pressure gradient dp/dx along the
axis are called isogradient diffusers.
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coincide with the data of the experiment.

For calculation of the distribution of velocities along the axis of the

O Qdiffuser we will integrate equation (5-10):

St--I' , \rz 2k 9dLoA ,
-- - -- (7-9)

where the elementary work of friction dLA can be expressed by the lose factor in

the diffuser.

As a result of integration we obtain:

A - -(7-10

whore

_.._.•..(7-11)

l- Ik+._ (7-12)

?ollowing the method described in work 4CL.I7 we will introduce by analogy

with the reduced expenditure in the given section qQ.) function

,k+l 'IhI ' j-
( (7-1)

During the absence of losses q 0(.) q (A) , therefore function q. (1) can be

called the generalized reduced expenditure. Knowing the distribution of speed

along the axis of the diffuser, by the equation of inseparability with the help

of this formula can be found the relation of pressures of full deceleration in an

arbitrary section of the diffuser Zee formula (2-41)7t

p. I q (1,) (7-14)"X T, r wi -(K,)

and the corresponding relation of static pressures:
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P- ,• (7-15)T0
Here 2(1) - Eoq(A) (see Chap. 2).

P

Calculation of the distribution of the parameters of flow along the axis of

the diffuser, taking into account viscosity5 shows that the velocity of flow in an

arbitrary section is larger, b,, static and total pressure are less than the cor-

responding values of these quantities obtained without calculation of the influ-

ence of viscosity. Curves 1 show that restoration of static pressure in the coni-

cal diffuser occurs most intensely in the initial section. Further growth of P

is abruptly slowed down, and, starting from some limiting value fPeA the pres-

sure starts to drop.

Formula (7-15) also reflects the influence of compressibilityt with an

increase of velocity at the entrance the positive pressure gradients increase

especially intensely on the initial section.

For evaluation of the accuracy of calculation by the formula (7-14) in Fig.

7-4 are presented values of to according to data of K. S. Szilard for a diffuser

with f - 4.92 and Y% - 4 and 8o. The coincidence of calculated and experimental

data should be recognized as satisfactory in the entire range of numbers M 1<A4I..

084 * Af'

Fig. 7-4. Comparison of calcu]3ted and experimental values 68 for con'al

diffusers with different aperture angles (experiments of K. S. Suiilard).



We will conclude now with the characteristics of diffusers obtained during

experimental investigation.

0Let us consider in the thermal diagram the change of state of gaa in a sub.

sonic diffuser. Parameters of full stagnation of flow at the entrance in the

diffuser are determined by point 01 (Fig. 7-5), and the parameters of moving gas

up to the diffuser by point 1.

12

I~~ ,44 I,
'iL ___

* 1/

Fig. 7-5. Process of change of state of gas in eubsonic diffuser in
the thermal diagram.

Compression in the diffuser occurs with the increase of entropy. This process

will be depicted by line 1-2, and point 2 corresponds to the parameters of gais

after the diffuser. Point 02 corresponds to the state of completely stagnant

flow after the diffuser. In the thermal diagram it is easy to find corresponding

power characteristics: loss of kinetic energy &k, change of potential energy H,,.

and kinetic energy of flow in the exit section H,,,.. The energy loss factor in

the diffuser, as in the case of a shock, is determined by the formula (4-331):

k ,,.._,,., ,,,, , )(, ,. ) 9,. -16)

0
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where a GA P62 is the coefficient of restoration of stagnation pressure in the

difftser. 0
The effectiveness of the diffuser may be characterized also by power

efficiency

• -(7-16a)

In certain cases for evaluation of the diffuser is used another concept of

efficiency; this quantity is determined by the forrula

where t, -change of potential energy of flow in the diffuserl

I4• -difference of kinetic energies of flow at the entrance and exit sec-

tions of the diffuser.

After substitution of Huland a can be obtained the efficiency of the

diffuser in tne form of:

I k +-(7-16b)

The power efficiency depends only on losses of energy in the diffuser at the

time when ,.' changes during the change of the compression ratio. It is easy to

see that ij.> ip1,'.

Selection of the optimal diagram of velocities (or pressures) along the dif-

fuser is accomplished on the basis of variant calculations.

The quantities h** and dp/dx, determining the state of flow in the diffuser,

depend on the expansion ratio (ratio f - F2 /F1 ) and the aperture angle of the

diffuser v,. It follows from this that the form of the optimal diagram of pres-

suros depends on these geometric parameters.

In diffusers with a smooth change of section (with small aperture angles)
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with continuous flow it is expedient to select diagrams with large gradients at

the entrance sections (diagrams 2 or 5 in Fig. 7-6,a) and with decreasing values

of dp/dx in the middle and exit sections; satisfactory results can be obtained in

the diffuser with rectlinear walls (diagram 3 in Fig. 7-6a).

In diffusers with large aperture angles separation occurs in cross-sections

of the entrance section. In order to displace the separation to the exit section,

it is necessary to decrease the pressure gradients at the entrance, i.e., to cross

0- 
t >0-- ---

Up q2 0,4 0 006 Os to

Fig. 7-6. Diagrams of pressures and flow areas of diffusers of
different form.

to the curve dp/dx - oonst (diagram 4 in Fig. 7- 6 a, etc.). Changes of flow areas

of diffusers providing diagrams of the shown pressures are presented in Fig.

7-6b.

7-2. Subsonic DiffUsers
let us consider influence of basic geometric and regime parameters on effec-

tiveness of flat and conical diffusers. As it was shown, the most important

geometric parameters are the aperture angle yA and the expansion ratio f.

Prom the presented formulas (Section 7-1) it follows that at the givei dis-

tribution of velocities, the value of the parameter r does not depend on 1, and

thim qxmntity can be selected arbitrarily. On the basis of formula (7-i1) tt may
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be concluded that at large angles Vi losses in the diffuser are decreased.

However, as experiments show, at yV' 8 to .l2e in conical diffusers there

appears separation; losses of energy at this time abruptly increase.

It is possible to consider that the formation of separation at a large aper-

ture angle is combined with a nonuniform distribution of velocities at the

entrance. .'ost cases the transition from the convergent channel part to the

conical di..user takes place with a sharp change of curvature of the walls, and

the jump in curvature increases with the increase of U.. Such a local disturbance

of boundary conditions is the cause of the early separation of the boundary layer

during the increase of angle Y.i. The fn±'luence of the shown disturbance is

especially great in those cases, when the bowudary layer at a significant distance

from the input is laminar.

Let us note that the character of nonuniformity of the velocity field at the

entrance has considerable influence on losses in the diffuser. Especially unfav-

orable is the diagram of velocities 1, drawn out in the middle part (Fig. 7-7);

less important is the influence of nonuniformi.y, if the flow is characterized by

increased speeds at the walls (diagram 2). In this case the losses can be

smaller, as compared to the uniform velocity field (diagram 3). Nonuniformity,

characterized by diagram 2 in Fig. 7-7, is favorable because in this case the

boundary layer in the diffuser becomes thinner, and the point of separation is

displaced along the flow.

During regular organization of the flow at the entrance into the diffuser,

the aperture angle VA may be assumed to be increased.

During determination of the optimum aperture angle yjt.opt, i.e., the max-

imum angle at which flow separation has not yet occurred, it is possible for round

diffusers at low velocities to use the formula of I. Ye. Idellchik:

Vlopt- 0,4372.j ! E'
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where '? -- experimental coefficient# taking into account the influence of the non-
uniformi y of the velocity field at the entrance to the diffuser.

One should note that the formulas for '(A.optreprosent this quantity in
dependence upon the Reynolds number, a function of which is the drag coefficient

". Calculations show that with the growth of Rel, YAopt is increased.

SFig. 
7-7. Influence of character of nonuniformity of velocity fieldat the entrance section of the diffuser on losses;

Re1 - 3.105; X 1 0.5.
According to the experimental data of K. S. Stilard, with the growth of

Mach number M1 the advantage of small angles increases. Consequently, with an
increase of M, the optimum aperture angle should decrease (Fig. 7-4). This
result is evident, since the influence of compressibility appears in the fact that
the longitudinal pressure gradients increase. So, during increase of Mach numberS1 from 0 to 0.8, Y(,optis decreased by 0.7--0.90 (Re, M 106). This dependence of

Tiopton Maoh number X, is less intense, than on Re 1 .

Experiments show that for round conical diffusers, optimum value:, of '(Y opt
can be taken within the limits TA.opt = 6 to 150. The most commonly used a-e the

average values 10-12o.

An important geometric characteristic of diffuser is the ratio of secLons f.
At a given speed at the entrance, increase of pressure occurs only up to dorinite
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limits, and in the conical diffuser and in the diffuser of optimal form, the most

.violent increase of pressure corresponds to the initial section,

The value of parameter f corresponding to the maximum compression ratio in

the diffuser is called limit frnpe$Aj. Design of diffuser with the largest ratio

f is not expedient, since, in this case, at the exit section is detected a lower-

ing of pressure.

Results of calculation show that f,, depends on the aperture angle of the

diffuser y,, the dimensionless speed of flow 1, and Reynolds$ number Re1 at the

entranoe. With increase of T" and A, the value of fm.P• decreases. Phys-

ically this result is explained by the fact that with increase of "73 and 1,9 are

increased the pressure gradients. Increase of Reynolds number leads to increase

of I, since in this case are decreased the functional losses in the diffuser.

One should note that values of taken in practice should be loes than

the calculated values. Indeed, the most intense compression of gas occurs in the

entrance section of the diffuser, so i.at in sections f - 2.5 to 3.5 increase in

.pressure is nearly 90 o/o of the maximum,. corresponding to ,.• (for diffusers.

with aperture angles "TA - 8 to IS). Upon final selection of , one should

make a detailed calculation of the boundary layer and evaluate the probability of

formation of separation by the parameter r< s's"

Results of corresponding calculations for conical diffusers are shown in Fig.

7-4. It is clear that the limiting values •,, determined by the conditions of

continuous flow (!' i's) and maximum increase of pressures in the diffuser p2/p 1 -

0"9(PiPl) are considerably lower than the theoretical f,•, depicted by

the solid lines.

For diffusers constructed according to rational distribution of pressures,

the values, of 1,•A can be selected larger, since in this case flow in the

diffuser is continous.
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Fig. 7-8. Limiting expansion ratios of diffuser in dependence upon
the aperture angle and dimensionless velocity at the entrance.

The influence of the form of the diffuser on its basic characteristics was

partially considered in section 7-1. As was showi, the solution of this problem

is not universal; the optimum diagram of pressures changes in dependence upon two

basic geometric parameters-the ratio of sections f and the length of the diffuser.

At small length and large f, when the pressure gradients at the entrance very

abruptly increase, the formation of separation in the entrance sections is possible.

In theme cases it is necessarv to decrease dp/dx at the entrance, and dif-

fusers with constant pressure gradient turn out to be more effective for large

aperture angles, i.e., small length and large f. This fact is clearly confirmed

by the experiments of I. Ye. Idellchik with flat diffusers (Fig. 7-9).

Since in inogradient diffusers, frictional losses are greater (in connection

with the fact that ' ** increases at the exit more intensely), the application o~f

such diffusers should be considered to be expedient only during aperture angles

Tp'18°. In the interval ya - 12 to 180, the best results are given by diffusers

with rectlinear walls ( "(,a conet). At small angles "[• 12o one should change

to diffusers with curvilinear convex walls (curves 2 in Fig. 7-6),.
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Fig* 7-9@ Change of the lose factor in flat diffusers is dependent
.upon the relative length T.

Also possible is the application of combined diffusers, the basic diagram

of which are shown in Fig. 7-10. Special. interest is presented by the stop dif-

fuser. Increase of pressure here occurs in the beginning in the usual smoothly

expanding channel, and then the pressure increases during sudden expansion of the

cross section. Such diffusers should be applied for small length and large

ratios f. For each value of f there exists a definite optimum length IA , which

corresponds to the minimum losses. At the selected optimw. aperture angle '(Aopt

and 1. , the area of the exit section of the smooth part of the diffuser F12 is

determined uniquely.

Step diffusers have important advantages in those cases, when it is necessary

to shorten the length of the diffuser. At small Vit, the application of the step

diffuser is not expedient, since total losses during the sudden expansion incroase.

Expe, 'aents show also that the effectiveness of a diffuser is influenced by

the form of its cross sections. In round and flat diffusers, losses of energy

are minimal. In diffusers with square or rectangualr croas-section with broadening

in two planes losses are higher. This is explained by a different change of pres-

sures along the flow: pressure gradients in round and flat diffusers at identical F1

and F. will be less than in square ones. In ncn-circular diffusers, losses are

increased due to the interference of the boundary layers in the corners.
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C)0
Fig. 7-10. Diagrams of combined diffusers.a, b and -- step diffuseres, c-diffusers withsmall (1) and large (2) precaure gradients atthe entrance; d--diffuser with separating walls;
f-iisogradient diffuser.

Experiments confirm the significant influence of initial turbulence on
characteristics of the diffuser in full conformity with that which was obtained
during investigation of the boundary layer (Chapter 5). Loss factors intensely
increase with increase of initial turbulence.

We will conclude with the evaluation of the influence of the basic regime
parameters, the numbers, Re and X1, on the characteristics of diffusers.

l !• PS; " . . .. M8 0

to 45 40 J,0
Fig. 7-11. Influence of numbers
Re, and N on the loss factor in
conical diffusers. Ta -_T~ARe,-- '..

Rxperiments show that the character of curves o (Re 1) depends on the geometric

characteristics of the diffuser: y, and f. The corresponding curves according
to data of different investigations are shown in Fig. 7-11. As can be seer., the
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influence of Re is observed at Re 3 105 in dependence upon j.t , f and the
1 1 2

form of the diffuser. Let us note that the characteristics %., (Ren) at large

aperture angles and 1>4 proceed with more gentle slope. Here is observod an

analogy with the influence of initial turbulence: at large 1,, the influence of

5 weakens.
0

Increase of the number M1 leads to increase of pressure gradients; in accord-

ance with this, frictional losses in the diffuser, with increase nf M starting

from M,>0.7 , are increased. Compressibility leads to increase of windage losses

in the diffuser; during separated flow, with increase of MI the point of separation

of flow is transferred to the entrance section.

At transonic speeds at the entrance (at Ml <1) losses in the diffuser increase

especially intensely, since the pressure gradients in the entrance section

abruptly increase, which loads to early separation even for small aperture angles

(Fig. 7-4). One should to note that the curves in Fig. 7-3 reflect the influence

not only of the comprescibility, but also the Reynolds number. Decrease of

with increase of H1 for 0.1 < AJM1  0.5 is caused by change of Re1 , since in this

range of Mach numbers M1 the influence of compressibility still is not apparent.

Let us consider in conclusion certain results of experiments, carried out for

the purpose of lowering of losses in diffusers with large aperture angles. Accord-

ing to the data of I. Ye. Idel'chik, along with the application of isogradient

diffusers, lowering of losses may be attained by installi tion of grids, separating

walls and by the organization of drawing, or blowing off of the boundary layer,

and also by the application of step diffusers.

Experiments of V. Kmonichk showed that the installation of a wire bundle

leads to a noticeable decrease of losses in a flat diffuser with large aperture

angles (Fig. 7-12,a, b and c). Analogous results were obtained for round diffusers

with a radial distribution of the wires (Fig. 7-12.,d).

The detected effect is explained by the fact that the resistance introduced
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into the diffuser equalizes the velocity field at the exit from the diffuser.

Equalizing of velocities leads to displacement of the point of separation along

the flow, since the velocity profile by the walls becomes fuller (Fig. 7-7).

The optimal position and the form of the wire grids introduced into diffuser

depend considerably on the form and aperture angle of the diffuser, and also on

the flow regime (numbers M1 and ReL).

Investigations of V. Kmonichk were carried out with resistances, introduced

inside the diffuser. It turned out that for a flat diffuser with an aperture angle

Vj -W 154p the variant in Fig. 7-12,a is optimal; for V. - 300 the best results

were showed by variants b and c. Improvement of the flow of gas in the diffuser

with large aperture angles can be provided also with the help of deep grooves,

tirned at some distance from the entrance section (Fig. 7-12,e). The drawing

off of the layer due to the grooves displaces the separation along the ^low, as

shown by experiments of V. K. Migaya.

got#. -

Fig. 7-12. Influence of local resistances on losses in flat diffusers At
small velocities.

KMY: (a) Without wires.



7-3. Exhauat Ducts of Turbomachines

Exhaust of gas from a turbomachine is carried out along the axis of rotation

or according to structural conditions at a right angle to it. Partial conversion

of the kinetic energy of the exhaust into potential energy allows an increase in

effMciency of the turbomachine. Such conversion is realizable in diffusion

Fig. 7-13. Rational diagram of exhaust

ducts of turbomachines.

exhaust ducts, various diagrams of which are shown in Fig. 7-13.

The first two diagrams (a and V) show the simplest curvilinear annular

diffusers F,>F, with axial or diagonal flow of gas.

The three other ducts must provide a turn of the flow at an angle of 900 to

the axis of rotation. In the diagram of the duct in Fig. 7-13,c is applied the

developed annular diffuser 1 with a diagonal or axial direction of flow. In such

a diffuser basically occurs the conversion of kinetic energy into potential; the

turn of the flow by an angle of the order of 900 is realised even at low velocities

in the scroll 2. The exit part of the duct (radial diffuser) has relatively small

length.
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The other diagram (Fig. 7-13,d) ensures pressure recovery after the turn in the

O radial diffuser. In such a duct it is desirable to make the turn in the converging

flow or, in an extreme case, at constant speed.

As can be seen from comparison of diagrams c and d, the first diagram has sign-

ificantly larger axial dimensions, and the second--radial.

The third diagram (Pig. 7-13,e) is combined. Here are designed relatively short

axial (or diagonal) and radial diffusers. Consequently, pressure recovery in such

a duct is realized partially before the turn and partially after it. Such a problem

is solved in the diagram f, realized with a step diagonal diffuser. The effective-

ness of each diagram depends considerably on the method of turn of the flow in the

scroll (during transition from axial to radial diffuser). This problem is solved

by the corresponding selection of a rational system of annular turning guide blades

and vanes, established at the turn.

As it was shown in Section 5-15, in curvilinear channels, there appear secondary

motions of the liquid, combined with nonuniforn pressure distribution at the turn.

In annular curvilinear channels, the structure of the secondary flowsadepending

upon the ratios of diameters d2 /%? can differ considerably from the usual for the

simple turn. At large values of d./d 1 experiment confirms the existence of two

vortexes in the cross-section of annular channel. If the ratio of the diameters is

near to unity, then in the cross-section will appear four vortices, located in the

section of the annular channel (two internal and two external).

Searing in mind what was said above about the influence of the form of the

section of the channel, it may be concluded, that inescapable reforming

of the section of flow in the ducts of turbomachines should be organized takiig

into account additonal losses, which can arrise with this.

Structurally, stiffening ribs are necessary in ducts. Selection of a :-ational

* diagram of the location of ribs and their form, which insures minimum losses,

constilutea an important problem in the designing of ducts.

S. . . .. ....L.M.• .:



Especially complicated constructionalll are exhaust ducts of powerful steam

turbines. Large volume expenditures of steam in the condensor with constructionally

limited axial and radial dimensions leads to a complicated diagram of the duct with

a large number of stiffening ribs. An example of the rational distribution of ribs

at the turn is shown in Fig. 7-13 and 7-17.

During investigation of exhaust ducts, the main characteristics are determined,

experimentally, among which are included: a) a coefficient evaluating power losses

Fig. 7-14. Process in exhaust duct in thermal diagram.

itthe duct; b) coefficient of pressure recovery, showing the change in static

pressure; c) variation factor of the velocity field in the exit section.

It is convenient to consider the process in the duct in the thermal diagram

(Fig. 7-14). Designating by p01 and p. the stagnation pressures at the entrance

the exit from the duct, by p1 and p2 -- the static pressures in these sections, we

find the power loss factor by the formula (7-16).

Having obtained the loss factors in the exit section of the duct, its mean

value can be found by the equation of energy.

In Fig. 7-14 are considered two possible cases: a) the exhaust duct of a

turbomachine works as a diffuser (process 1-2); b) in the exhaust duct occurs lower-

ing of pressure due to large losses (process 1-2'). Here it is possible to indicate

magnitude of kinetic energy after the branch pipe (h2 k), change of potential energy

in the branch pipe (h2 .) and losses (Ah or correspondingly Ah').



In the practice of laboratory investigations of exhaust ducts, other evaluation

* coefficients also find application. Thus, for example, the laboratory of turbines

LMZ uses for evaluation of a duct the quantity

where H" -isentropic drop corresponding to expansion from the stagnation pressure

at the entrance pC1 to the static outlet pressure P2.

The connection between the power loss factor and is established by the

following obvious relationships (Fig. 7-14):
IH~ Ito. Hogl. -- hb. -r= Hi., -- 10. --h•) = AH., "-h,*,

therefore

A C ++ .

It follows from this that CI. includes the kineti%. energy at the outlet from

the branch pipe I2k h2 k / 0." It is easy to see that if Ca>I (1l" > t/.,), then

p,<p, (exhaust duct is not a diffuser); if C.<I, then P>P,.

For an incompressible fluid, the coefficient of the duct is defined by the

formula . I -PA
&. - P-

Taking into account the compressibilityp C. can be obtained in the form:
h--I

The coefficient C. allows the calculation of the powerloss in the exhatat duct:

-I - -. , ( • -1 8 )

where G. -flow of gas through the exhaust duct.

The second characteristic of the exhaust duct, the recovery factor, is determined

by the formula PA _',
k-, + IP P.i,

"31 8 (7319)
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From formula (7-19) it is clear that for the determina-tion of the quantity • , i

is necessary measurement of static pressures at, entry into the duct. Such an experi-

ment is labor-consuming. Using the discharge coefficient G, - f(p 0) and the table

of gas-dynamic functions, pressure p1 can be obtained by means of calculation.

The third characteristic of the duct allows the evaluation of nonuniforlity of

the field of static pressures and velocities in the outlet section. As was shown,

an important element of the exhaust duct is the curvilinear annular diffuser.

Experiments of M. Khibsha showed that the loss factor for such a diffuser depends

on the following geometric parameters (Fig. 7-15,a):

The ratio of the areas of sections '-. ; relative height of the ring at

the entrance a,/ra, ; relative curvature of the middle line ; relative length

of the middle line -E. and the law of change of area f(X)

Examples of corresponding dependences are shown in Fig. 7-15,b. Curves show
that the optimum value of r R1' lies within the limits 0.25--0.4, and with growth

of : this magnitude is increased.

During design of curvilinear diffusers is used the concept of the equivalent

conical diffuser, the length of which, and also the areas F'1 and F2 coincide with

the corresponding geometric parameters of the original diffuser. In accordance with

this is introduced the concept of the equivalent aperture angle.

An analogous characteristic can o used Plso for annular curvilinear diffusers.

Losses in the annular curvilinear diffuser increase with an increase in f and

with a decrease in al/ria.

A significart influence on the loss is rendered by the form of the diffuser

in the longitudinal section. The form of the function f(X) determines the change

of pressures along the diffuser, i.e., the structure of the boundary layer and

8* (x).

Selection of the rational function [(x) can be carried out, for example, by

means of evaluatton of the change of 7 -* for different pressure diagrams. Thus, it

L l -I 0 nI I I . - I
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Fig. 7-15. Diagram (a) and loss factors in a curvi-
linear annular diffuser independence upon the main
geometric parameters (b, c and d).

is necessary to consider the design features of the p2anned machine.

Diagrams of frequently applied annular exhaust ducts are shown in Fig. 7-16.

One should note that losses in such diffusers, as a rule, are small, if the indi-

cated geometric parameters are near to optimum. An alternate design of diffuser 4

(Fig. 7-16) with maximum curvature of forms gives maximum losses, but the alternate

design of diffuser 2 gives minimum.

Results of the investigation of annular diffusers were used as the basis of

development of the exhaust ducts of the turbine, the diagram of which is shown in

Fig. 7-17,a. The duct consists of a curvilineai, annular diffuser I and scroll 2

Fig. 7-16. Diagram of the applied annular exhaust ducts

(a) and dependence of loss factors on Reynolds number Rel(D).
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(exhaust part), in which occurs the turn of the flow by 900. At the entrance to

the scroll during the turn, the flow is divided by the central rib 3 and spreads

along the curyilinear channels formed by ribs 4,4', 5,5' etc. Design of the channels

between the ribs is carried out in such a way that losses from secondary flows are

minimal. This will be attained by design of the channel to be diffusor-type at

the start and then convergent L > 1 and -L" > 1).

The results of the investigation presented in Fig. 7-17 b of the branch pipe

show that its effectiveness considerably depends on the relationship of the areas

of the annular diffuser and the scroll 1-21 and f,=-F,/F,. The largest values

of the coefficients , are obtained for the variants f - 2.5 and f, l.so16 With

increase of f to 3.32 and during the corresponding decrease of f to 1.1, Ca was

decreased to 0.75. The variant near to optimum corresponded to the ratios of

sections f - 3.04 and f - 1.2. 1@

00

3.t

Ir I. all RI

Fig. 7-17. Diagram of exhaust duct of turbine (a)
and its characteristics (b).
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The obtained values of the coefficients • and their change in dependence

* upon Reynolds nuber Re clearly show that for correct selection of the ratio of1
flow areas, the exhaust duct reacts less abruptly to change of this regime parameter.

A variant of the combined duct with short axial and radial diffusers for the

condition of correct jolection of relationships of flow areas gives results near

to those obtained for the first variant.

The influence of compressibility on characteristics of an exhaust duct can be

evaluated by the curves in Fig. 7-18. With an increase of M1 is noted an increase

of losses (• is increased), especially intense at htt> 0.8. It is characteristic

*that ducts with well-developed annular diffusers are less sensitive to change

of X 1(curves .and 2 in Fig. 7-18). The branch pipe without a diffuser practically

does not react to a change in M 1 (curve 4) and has 4a> 1.

Thus, the experimrnts carried out have shown that introduction of axial and

radial diffusers into the design of the exhaust duct allows a considerable improve-

* aent of its characteristics and the providing of partial pressure recovery after the

t urbomachine.

By correct solection of the form and flow areas of diffusers and scroll, and

also by rational location of stiffening ribs, it is possible to to increase the

effectiveness of the duct.

* /• •-y •-- --nExperiments show that in certain

I cases an exhaust duct with vane cascades

of the diffusion type established on the

S -- turn (Fig. 7-13) have noticeablo advant-

Fig. 7-18. Characteristics of exhaust Practical interest has the question
duct with diffuser (1, 2 and 3) and
without diffuser (4). concerning the influence of irregularity

(spizn) of flow at the entrance into the duct, Corresponding experiments hav, shown

that deflection from the axial entrance within the limits + 150 do not lead to a
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noticeable change of characteristics of the duct.

7-4. Supersonic Diffusers

From the fundamental equation of one-dimenuional flow it follows that deceler-

ation of supersonic flow can be realised in a pipe of variable section, the inlet

of which is narrowed, and the outlet of which is widened. In the first part speed

is decreased and will attain a critical value in the minimum section. Then, in the

expanded part is continued the process of compression of subsonic flow.

It follows from this that, in principle, it is possible to utilize ma supersonic

nozzle with contoured walls, as an "ideal" diffuser, considering the flow in it

turned (Fig. 7-19). Due to the smoothness of the contoured walls, at every point

of which the flow accomplishes a turn on a small angle# in the inlet of the diffuser

should appear a system of weak compressional waves (characteristics). Passing

through this system, flow is decelerated isentropically. A system of weak compress-

ional waves completely coincides with thi system of weak wave of rarefaction

b)

Fig. 7-19. Diagrams of a supersonic (a) and transonic
(b) diffuser with straight shock wave at the inlet.
KEY: (a) characteristics; (b) shock.

(characteristics) in the widened part of the nozzle.

In the throat, flow attains critical speed ). - 1. In the widened part of the

diffuser velocities are subsonic, decreasing in the direction of flow.



In reality, however, such a diffuser cannot be realized, since flow in it is

O unstable: small disturbances of flow in the inlet lead to final disturbances at the

outlet. This is explained by the fact that for a small decrease of Mach number M

at the inlet into the throat critical velocity will not be established, as a result

of which, in front of the diffuser wir. appear a departed wave. Actually the field

of the flow proceeding into the diffuser from the Laval nozzle, as a rule, is non-

uniform and saturated with shocks. Besides, due to the appearance of losses in

the inlet and formation of a boundary layer, the character of change of flow areas

will not correspond to the calculated change. As a result, in the inlet appears

a system of shocks.

The process of movement of gas in a diffuser is constructed in the thermal

diagram by a known method (Fig. 7-20). Point 1 corresponds to the state of flow at

the inlet into the diffuser. Line 1--2 conditionally depicts the process of com-

pression of gas in the system of shocks in the supersonic part of the diffuser.

The corresponding increase of entropy %., characterizes basicall&y the wave losses

in the inlet of the diffuser. Behind the shocks is established pressure P25 ' If

PdJPo2<e.,then behind the shocks the flow is still supersonic and in the narrowed

part of the diffuser compression of the gas is continued. If p25 / p(Q >r" ' then

flow behind the shocks is subsonic. This means that in the narrowed part up to

the minimum section the flow w1il be accelerated and its pressure will fall. If in

the minimum section the velocity of flow will attain the critical value, then in the

widened part •>I In this case deceleration of flow will occur in the system of

shocks after the narrow section. Increase of entropy As& is caused by losses in

the subsonic part of the diffuser.

Let us note that full change of potential energy in a supersonic diffu- or Hl

can be considered as the sum of the change of potential energy in the systen of

shocks •f,, and in the subsonic part hI.

%t small supersonic speeds at the inlet (Al< 1.5) it is possible to asply

LM
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I" ~the usual widened subsonic diffusers

(Fig. 7-19,b). In this case before the

widened part there appears a normal shock

./Iwave, in which flow changes to subsonic

speeds. In the widened part is continued

compression of subsonic flow. Loss in

such a diffuser can be moderate, since

atMAi< 1.5 wave losses in shocks are

small.

Hydraulic calculation of a supersonic

Fig. 7-20. Process of change of diffuser is based on equations of one-
state in a supersonic diffuser
in a thermal diagram. dimensional flow. With the help of the

equation of energy, the power efficiency of the diffuser is determined by the

formulas (7-16) and (7-16a).

Sections of the diffuser are calculated by the equation of continuity, which

(for the narrowed part) can be written in the form of:

,,•, 1 , =p" 1.'F.

where p and A' are the density and velocity in the minimum section of the

diffuser.

After transformation we will obtain:

, l:/ (7-20)
TApop&qm pot

If in the narrow section the critical velocity 1 - 1 is established, then

', 1 ',/ p ". (7-21)

or ,_ -- .Fe kIt k I i":i

where CAl is the loss factor in the narrowed part of the diffuser.

Formula (7-22) shows that with increase of losses in the narrowed part, the



ratio of sections F,/F., is increased. Hence, it also follows that for a fixed

value of F,/F.A change of parameters at the inlet leads to change of losses in

the narrowed part. Comparing the two flow regimes for identical initial conditions

with different losses, from expression (7-22) can be obtained the formula, showing

that the minimum section of the diffuser must be increased in proportion to the

change of stagnation pressure in section "F

or

Here p•, is the stagnation pressure in the critical section for the given

regime; p; is the same for another regime.

IPA 0 16aot•a ,,

.48 45 1~09A ?JW.u.5 , *

Fig. 7-21. Efficiencies of a supersonic diffuser
in dependence upon M .1--with a normal shock in
the throat; 2-with i normal shook at the inlet.

For design of the inlet of the diffuser it is necessary to know the value of

the loss factor cm, and, consequently, the structure and position of shock waves in

this section. In the simplest case it is possible to assume that in the Inlet, is

located only one normal shock. The magnitude of ",, , depends on the location of

the normal shook. If the shock appears in section Fl, energy losses will be

Maximu!m if the shock is located in the narrow section, losses will be *14ýLifi-

* cantly lowered.

For illustration, in Fig. 7-21 are shown the corresponding efficiencies of the
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diffuser ian ari j for two extreme cases (1--with a normal shock in the throat,

and 2--with a normal shock in the inlet), and also experimental values of efficiency.

Comparison shows satisfactory coincidence of calculated and experimental values.

The outlet of the diffuser is determined by the equation of continuity. The

loss factor in the widened part of the diffuser 2 in the first approximation can be

obtained by the data of tests of subsonic diffusers. They are given as velocities

from the outlet of the diffuser.

The full lose factor in the diffuser can be found by the formula (fr 1' 1)0i
Stagnation prpssure behind the diffuser is determined by equation

h,,/-, I ,• (7*~
P" -i 'T T+ .T " A.,2/)

Wave losses at the inlet can be decreased by introducing stepped deceleration

of flow in the inlet (Chapter 4).

Deceleration in the system of shocks is realised by different methods. One

of the methods consists of constructing the walls of the inlet section with fissures

(Fig. 7-22a). The best result can be obtained with the help of a contoured needle

(Fig. 7-22,b). In diffusers of jet engines an analogous system of stepped deoeler-

ation is applied (Fig. 7-22,c).

For decrease of wave losses at the inlet a system of reflected shocks is also

used (Fig. 7-22,d and -22,e).

Design of a supersonic diffuser with stepped deceleration consists of several

stages. In the beginning a system of shocks is established at the inlet and total

pressure recovery and wave loss factor in the system of shocks are determined. Then

according to the given flow the critical section is calculated:

where t 7t= P in the coefficient of total pressure recovery in the system of

shocks.



It is expedient to make the initial

section of the widened part of the diffuser

conical. The outlet part of the diffuser

is designed according to the selected ra-

5) tional distribution of pressures (Section

7-i). By the results of calculation of

"the boundary layer, losses of energy in the

subsonic part of the diffuser ýAand, for

the selected area of the outlet section

F 2 # the velocity at the outlet from the

diffuser 1, are determined.

Let us consider certain characteristics

of operation of the supersonic diffuser

for off-design conditions. The regime

in the diffuser can change as a result
Fig. 7-22. Diagrams of supersonic f
diffusers with stepped deceleration of change of the parameters of flow at
of flow in a system of shock waves. /
KEY: (a) shocks. the inlet ( 1j, p. P0,/ and, consequently,

flow of gas C) and outlet pressure p2 .

Let us assume in the beginning that the parameters of flow at the inlet

and flow through the diffuser remain constant, and we will follow the influence of

the changing counterpressure p2. Let us assume that in section F.A the velocity

is equal to critical, but the pressure of the medium is significantly lower than

calculated (pa . p, ). In this case the widened part of the diffuser operates as a

supersonic nozzle. On the outlet in dependence on pa appear waves of raref'action

or slanting shocks. With increase of pa the system of nhocks is reconstructed; at

pressure Pa a P2k at the outlet section a bridge-like shock is located; urpn further

increase in p a the shock is transferred inside of the expanded part and noves to

the minimum section. At a certain limiting counterpressure pa W P2m the 'hock

is located in the throat of the diffuser (narrow section); flow in the wid ned part

Is completely subsonic. To such a regime with a shook in the throat corre ponds



the maximum compression ratio in the diffuser.

The corresponding graphs of the distribution of pressures alc.,g the diffuser

at P. </)2, is shown in Fig. 7-23,a (curves OAC, OADS, etc.). This part of the

diagram of pressures completely corresponds to the diagram of pressures in the nozzle

for the second and third groups of regimes.

Further increase of counterpressure leads to change of the parameters of flow

(pressure and density) in the narrow section and in the inlet.

Let us consider now the influence of change of parameters of flow at the inlet

into the diffuser. Let us assume that the pressure behind the diffuser is maintained

constant (pa< p2m). Velocity at the inlet is increased. At subsonic speeds

at the inlet (a1,< 1) in the narrowed part, flow is accelerated and maximum velocity

will be attained in the narrow section F.. . With increase of A, the flow of gas

and the velocity in the nrurow section 1 4 increase.

At some value the velocity in section F.A equals critical (A:==1).

Further increase of flow at constant static pressure in front of the diffuser becomes

impossible. In aecordance with this, the increase of speed II'>AI" will entail an

increase in pressure in the inlet section of the diffuser and in all other aections

of the narrowed part; as a result, at >I in front of the diffuser will appear

a shock. With increase of 1; the shook approaches the diffuser and at a certain

value of A' is located in the inlet section F If the shock in the inlet is normal,

then in the narrowed part flow is subsonic and accelerated toward the minimum section.

So that the normal shock (or system of shooks)penetrates into the narrowed part of

the diffuser, further increase of velocity AI is necessary ( >

Since during movement of the shock toward the throat, losses of energy are

decreased, then in the minimum section the critical velocity can occur again. In

certain cases at -pa -PU during transition to the widened part, the flow continues

to be accelerated and becomes supersonic. Then in the widened part of the diffuser

appear shocks. In such regimes losses in the diffuser abruptly increaoe.*

s he F insldered case is shown by the dashed and dotted line in the diagrami--as ~. -0
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Fig. 7-23. Distribution of pressures
in a supersonic diffuser at different
regimes.
KMY: (a) shock.

The considered regimes are illustrated by graphs of the distribution of pres-

sures in Fig. 7-23,b. At the uimultaneous appearance of shocks in the narrowed

and widened parts of the diffuser, distribution curves of pressures assume the

characteristic loop-shaped form.

Consideration of operational conditions of a supersonic diffuser at off-design

conditions shows that the ratio of sections F.A/FS must change during charie of

* the parameters of flow at the inlet or outlet. In the period of starting tUs ratio

F.ý F1 must be maximum. In operation any disturbance of the regime can b,.



partially compensated by corresponding change of the ratio F./F,..

Will analyze in more detail the variable regimes of a diffuser with changing

minimum section in the process of operation. If the minimum section is decreased

gradually from F., AF, to that value with which velocity Me 19 then flow

of gas through the diffuser will be kept constant (G - gFF1 p iCl). Howevergif the

area of the throat is further decreased, then flow through the diffuser will be

decreased. Near the narrow section will appear a shock wave, since the narrowed

throat represents additional resistance. Due to increase of entropy in the shock,

the pressure in the minimum section drops, but velocity and temperature are kept

maintained constant. Due to the decrease in density, flow is decreased to a

still larger degree and the shock will move against the flow. The intensity of the

shock will grow. Movement of the shock in the direction against the flow will

continue until it goes bey-ond the inlet section Fl; the shock will occupy a position

relative to Fl; at which a part of the gas will go out into the external flow pass-

ing the diffuser (Fig. 7-24,a)*

Upon further decrease of F.A , the shock ll move against the flow, providing

the necessary decrease of flow through the diffuser; the intensity of the shock will

be maintained practically constant.

Considering now the reverse process--increase in F.= , it may be concluded that

if F.4 attains that value at which the shock first appeared, then the shock will

not disappear, since the decreased density in the throat causes partial expulsion

of the mass of gas into the external flow. Consequently, F.• must be increased to

such limits in order to to compensate for the decrease in density in the throat.

Subsequent increase in F., will lead to displacement of the shock inside the diffuser

and will provide a constant maximum flow through the diffuser.

That which was stated shows that in the diffuser with a throat of variable

section are observed hysteresis phenomena. Graphs in Fig. 7-24,b additionally

illustrate these phenomena. In the diagram of the dependence of /G0 on ,

)000
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Fig. 72.Diagram of a diffuser
with regulAted mtinimum section
(a') and its discharge character-istic ()different regimes.

Kff: a) socks

(G in the flow through the diffuser; G gF1 it is possible to indicate

the point A,, corresponding to gA t Fe1 ((;-GO). With decrease of F.c flow in

kept constant up to point B, which corresponds to M* - 1 in the throat; in front

of the diffuser appears a shock, arid flow falls to the value at point D. Further

decrease of F.2 leads to change of flow along the line DO.

With increase in F. the shock in front of the diffuser i. maintained up to

that value of F•. which corresponds to point F.. The diffuser returns along the line

ODEA to the original poiat A. As a resultja hysteresis loop SBDS will be formed$

and in order to establish the state of flow in the diffuser at arbitrary F,, , it

is necessary to know what the direction of change of FA was.

It is necessary to underline the fact that regimes with shock waves in front

of the diffuser are characterized by a sharp increase of resistance. The dimension

of the hysteresis loop depends on Mach number M, with whose growth segment BD is

dispLaced to the left (Fig. 7-24,b). One should note that the region betwei, curves

, -. . . .. ,,, ,,, ,, . . .. • • 9 7 i



I and 2 in Fig. 7-24 characterizes unstable operating regimes of the diffuser, with

which a shock can appear and disappear.

e)4

Fig. 7-25. Diagrams of spectra in diffusers
with stepped deceleration at the inlet for
different regimes.

As it was shown, in practice, controlled supersonic diffusers (Fig. 7-Z3) with

stopped deceleration at the inlet are applied.

In those cases when the internal cone has the possibility of axial displace-

mentS, it is possible not only to improve the conditions of starting and operation

of the supersonic diffuser, but also to provide higher efficiency of the diffuser

at rated and off-design conditions.

Change of velocity of flow aL the inlet in such diffusers leads to chango of

the angles of slope of the shocks: at Ml> Mlp, the angles of shocks are decreased



but at M < M they are increased.1 lp'

In the first case (Fig. 7-25,a) interaction of the shocks with the opposite wall

will occur inside the throat or in the widened part. Also possible is distortion

of the shock near the external surface of the diffuser. During flow around the

edge there appears a wave of rarefaction ABC: as a result flow at the inlet in the

diffuser beccues nonuniform.

In the second case, whenMl< Mlp, shocks do not occur at the entrance of the

diffuser (Fig. 7-25,b). For this reason the flow of gas through the diffuser is

decreased and the wave losses in the shocks (Chapter 4) increase. At the entrance

of the diffuser appears a wave of rarefaction ABC.

At decrease of K1 the velocity of flow before the second turn (point D) can

become less than that value at which is still possible the existence of a rectilinear

shock (angle a,>6j.' ). In this case distortion and deperture of the shock from the

corner occur; losses at the inlet in the diffuser noticeably increase.

Characteristics of a controlled diffuser for variable velocities at the inlet

are presented in Fig. 7-26.

5 b'

Fig. 7-26. Coefficients of stagnation
pressure recovery in supersonic diffusers
for variable regimes. Numbers on the
dotted curves indicate the number of shocks
(by calculation). Experimental points are
drawn for a four-shock diffuser.

The position of the normal shock, closing the system, depends on the *idtlet

3 9 9



of the diffuser. If the outlet becomes larger than rated, then the normal shock

in the throat does not occur--flow remains supersonic in the widened part, where,

as it was shown above, there appears a system of shocks, in which flow changes to

subsonic velocities.

Upon decrease of the outlet, the normal shock is displaced from the throat in

the direction against the flow. In both cases wave losses in the diffuser increase.

7-5. The EJeetor Stage*

Gas ejectors find wide and varied application in technology. In such apparatuses

mixing of gas flows occurs (in the simplest and most wide-spread case--two). As a

result of mixing• parameters of deceleration and the static parameters of mixing flows

change. The main characteristic of the physical process in the ejector is that the

mixing of flows occurs at high velocities of the ejecting (active) gas.

The principle of action of the ejector stage can be comprehended from consid-

eration of the diagram presented in Fig. 7-27. Main elements of the stage are

-Fir. 7-27. Diagram of ejector stage.

nozzle A, mixing chamber B and diffuser C**. Ejecting gas under pressure moves to

the nousle A. Expanding in the nozzles the flow of gas acquires in section 1

supersonic speed. In the mixing chamber B a stream of active gas interacts with

the ejected (passive) medium and carries it along into the diffuser, where compression

*Article A 7-5 was composed with the participation of M. V. Polikovskiy;
Articles 7-6 and 7-7 were written jointly with A. V. Robozhevyy.

**The diffuser of the supersonic ejector usually consists of a conical inlet
section, cylindrical throat and widened outlet section.



of the formed mixture occurs.

0 tperimental study of the mechanism of ejection in the mixing chamber shows that

the most important influence on the process of mixing is rendered by the turbulence

of the flows and the wave structure of the supersonic ejecting stream.

Study of the spectra of the axially-symmetric supersonic stream (Fig. 6-28 and

6-29) allows us to establish that with moving away from the nozzle, on the periphery

of the stream a boundary layer will be formed. In the annular boundary layer speeds

change from small subsonic on the periphery to superionic in the section adjacent

to the flow core. Let us note that in accordance with the wave spectrum of the

stream the static pressure along the axis of the flow core periodically changes.

Along the diameter of the stream, pressures are also distributed nonuniformly: in

the stream will be formed transverse pressure gradients. In sections behind shocks

pressure gradients are directed toward the periphery of the stream, and in sections

behind waves of rarefaction--toward the axis of the stream. In the subsonic section

* of the boundary layer static pressure is near to the pressure of the medium. At some

distance from the nozzle the entire atream becomes subsonic: in this region static

pressure is distributed along the axis and the section practically uniformly.

These properties of the field of the axially symmetric supersonic flooded

stream allow us to conclude that between the external medium and the stream there

occurs continuous exchange of particles. Transverse displacements of particles

from the boundary layer into the core and from the core into the botundary layer

take place with an intensity which is variable along the axis.

We will returni to consideration of the procewss in the ejector stage (Fig. 7-27).

In section 2 mixed flow with a nonuniform velocity profile fills the inlet part of

the diffucer. In section 2-3 in the throat of the diffuser further raixing of flow

occurse In Isection '1-2 the process of mixing can be considered approximately

fsolsrie. In section 2-3 mixing and equalizing of flow are accompanied by En

O inrease Y average pressure in the section. In the outlet part of the diffuser
The J•let part and thront, of the diffuser scometimOs are called the miting chamben
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(section 3-4) there occurs further increase of pressure.

In the literature sometimes another diagram of the process of mixing is consid-

ered, when the distance between the exit of the nozzle and the inlet of the throat

of the diffuser x 0 0. Such ejectors (compressors) are called ejectors with a

cylindrical mixing chamber or with constant area of mixing.

Howeverthe indicated difference has no special meaning, since the considered

diagram (Fig. 7-27) can be changed into the other by means of continuous decrease

of the magnitude of x to zero.

For determination of the parameters of mixed flow in the outlet of the throat

(section 3) we will use the equations of momentum, energy conservation and continuity.

In the first approximation we will consider that the field of pressures and velocities

in sections 1 and 3 are uaiform; influence of force of the wall on flow is absent;

the pressure forces acting on the flow from the wall of the throat do not leave

arxial components; frictional forces in the first approximation also can be disregard-

ed. Therefore the change of momentum between section 1 and 3 equals the difference

of the pulses of pressure forces in these sections. Consequently, the equation of

momentum for sections 1-3 can be written in the form:

9 c,,+pF+c phFAF)

ci ,FG, + c. (7p4(,5)F

+j CA + P (7-25

where C-rate of flow of ejecting (active) gas;

CUt, p--speed and pressure in the outlet of the nozzle during isentropic outflow;

02 , 02 -flow rate and velocity of ejected (passive) gas;

a33 p3 -velocity and pressure of mixed flow in the outlet of the throat of the

diffuser;

F.,, F,--area of section of throat of diffuser and outlet of nozzle.

In the general case the sum of momentum and pressure forces i.e. pulse of flow,

is expressed by the formula of B. X. Kiselev C(2-44) and (2-45)].

Placing expression (2-44) into the equation (7-25), we obtain after simple

I, d*r'
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trasfrmaios: ~ ~ a 1( 1  n o),!aa+ (F.., F,).=

=k- a-,.3 " ( +-). (7-26)

where x0-/G, --coefficient of ejection;

a., a 2  and a.3 critical velocities of active, passive and mixed flows;

2,, -- dimensionless velocity at outlet from nozzle for isentropic outflow.

It is possible to express the flow of active gas by the formula

0& - gFipa.1,

where p. is the density in the critical section of the nozzle:
-_)f-2 f . (7-27)

bearing in mind that a. 2k and introducing function [? formula (2-45)],

we will re•present equation (7-26) in the form:

"'"'*-1ad -•-f V r. '* •- p- F•' */ (}

where T -aGt &nation temperature of mixed flow.

The ratio of stagnation temperaturos T. / To1 and T03 / TO. can be expressed

with the help of the equation of energy:
Ot,, "F + - (G -+ G)J 4.

Hence, considering the heat capacities of the mixed flows to be identical, we

come to the expression
70 re-, -* 2 T I+a, (7/-29)

where t. is the relative stagnation temperature of passive flow:

"-.~ T =•,,le -- i" -• Tr o $ '

Let us note that critical velocities a%1 and a , a and a of the flows are

connected by the obvious relationships:

an.. r"-= Y / ad j./ r-,,,. ad TI
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Placing expression (7-29) into the equation (7-28), we obtain:

2 F. 7 -0

=V +z)(, +z (Is).
Equation (7-30) establishes the connection between the dimensionless gas-dynamic

parameters P/P.' o, i and ., and the geometric characteristics of the ejector

F.IF.c and F1 / Fe.. One should bear in mind that the ratio also is a"A4I
function ofau . The velocity 1, is usually small, and in practical calculations it

is possible to disregard the second term of the equation.

Analysis of equation (7-30) shows that for the given values of X," IS Ph'Pe

and $,, the velocity in the inlet of the throat 3, is determined ambiguously; equation

(7-30)is satisfied by two values of 1,, cormected by the equation

j -"

The physical meaning of the ambiguity of determination of As is obvious, if

one considers that in a normal shock wave the velocities in front of the shock and

behind it are connected by the same kind of relationship. Inasmuch as in the shock

the pulse, flow of gas and stagnation temperature do not change, the fundamental

equation of the ejector stage (7-30) remains correct1 independently of whether

or not there appears a shock in the throat. With a sufficiently long throat which

provides equalizing of the mixed flow, there usually is realized a subsonic solution

of equation (7-30). Transition to subsonic flow occurs in the system of shocks in

.the throat.

Equation (7-30) serves for determination of the basic geometric characteristic

of the ejector stage FJF.C , or, if this magnitude i3 known, equation (7-30)

can be used for determination of the gas-dynamic parameters a and ps/p, or x and

p4 / P0 under the conditions of variable regime. In the last case, it is necessary

to use still one equation-continuity, which allows us to determine the stagnation

pressure in section 3.

The equation of continuity for the outlet of the throat is presented in

lint



the form:
0&+ 0& F.Ap.CI.g

After division by G we find:

Since

then
F. oA P G a 130I + 11)-- . . ..

Notioing that
p.,•,.1 rP".l+. and .." _ ,

we finally obtain:
V '0 (7-31)

From equation (7-31) it follows that the stagnation pressure in the outlet

of the throat depends on velocity •l(q3), a,, g and 'F.JF,.

Static pressure p4 after the diffuser is connected with the stagnation pressure

P04 and dimensionless velocity A, at the outlet from the diffuser by the obvious

relationship:
P0 ( -'i 742)

Usually velocity A, is smal and in first order of approximation it is possiblo

to consider that p4 z p.4. . If in the widened part of the diffuser losses are small,

then the stagnation pressure in sections 3 and 4 can be approximately taken as

identical, i.e., considered as Pe Ps k.

Thus, assuming that velocity 1. is small and losses in the widened part are

absent, we can determine the pressure behind the diffuser p4,-•p,,3 by the ;tormula

(7-31). If tbe velocity )., cannot be considered as a negligibly small quantity,

then p4 is determined by the formula (7-32).

The equations obtained, in the assumption of the simplest one-dimensional

4.05



character of tht. 1'-ocess In the ojecto:v', (7-30) and (7-31), evaluate only losses

of mixing, which are b•sic in the considere4d problem. However, along with losses

of mixing, it is necessary to consider also other losaes in separate elements of the

ejector: losses in the nozzle, in the inlet of the diffuser and in the throat*,

and also losseo in the widened part. Besides, the process in the inlet of the

diffuser in reality can deviate from the isobaric process assumed during derivation

of equation (7-30). Change of pressiwe in the general case does not start eYactly

in the inlet of throat 2., but higher or lower along the flow in the initial section

of the diffuser. Further, the fundamental equation of momentum must be supplemented

by a term expressing the influence oi pressure forces from the wall of the inlet

section of the diffuser, At the same time,' even for a significant length of the

throat, one should consider the nonuniformity of the field of flow in section 3,

which considerably affects the effectiveness of the diffuser.

Calculation of all enumerated factors characterizing the actual process in the

ejector stage is carried out on the basis of the following considerations.

Losses in the noaxle are taken into account by the velocity coefficient. The

actual outflow velocity from the nozzle equals.

The coefficient qo,' i/F is determined with the help of the curves pre-

sented in Fig. 6-31.

Losses in the widened part of the diffuser, taken into account by the coefficient

eou. can be taken accorling to the graph in Fig. 7-4 in dependence upon the

velocity ).3 in the outlet of the throat.

The force influence on flow of the wall of the inlet. of the diffuser is

oonsidered by introduction into the equation of momentum the pulse from the walls

*In the inlet and the throat, except for basic losses of mi.ng, there appear
losses caused by friction and wave losses.

L ....



I The specific impulse from the walls of the initial section of the diffuser

is calculakted, equal to:
toy ..- (7-33)

The absolute value t,• depends on the operating regime and geometric parameters

of the stage, first of all on the coefficient of ejection x, the ratio pk/Po' the

angle of conicity of the inlet of the diffuser, the distanae from the exit edge

of the nozzle to the beginning of the throat of the diffuser and the ratio FA/F.".

Experimental investigation of the influence of nonu•iformtiy or flow in the

outlet of the throat shows that this factor also should be considered during

design of the stage.

It is established that incomplete equalizing of flow in the throat leads to

a redistribution of the compression work between the throat and the widened part

of the diffuser. With increase of nonuniformity in section 3 the compression work

Send losses in the throat are decreased, and in the widened part increased. Detailed

analysis shows that into the fundamental equation of the ejector should be intro-

duced coefficients which take into account the influence of irregularity.

Taking into account all losses and nonuniformity of the field in section 3,

the equations of the ejector stage take the form:

FI

p* -- ,F/A + I/'-'pdF• F

(7-36)

where * A) AJ

1P. is the coefficient which takes into account the nonuniformity of the 3'%eld
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in the outlet of the throat; it can be calculated if the velocity profile# is

known.

By experiment it is established that in the limit regime (see below) for a

definite (optimum) length of throats the average velocity of mixed flow in the outlet

of the throat of the diffuser attains a critical value, and the velocity profile

approaches a quadratic parabola. This allows the calculation of this coefficient

for a particular case and setting 7. - 1.22 to 1.26. Accordig to experimental

data, valuos of the coefficient ?" in variable regimes oscillate on the average

within the limits ?, " 1.0 to 1.3. Smaller values of 9, correspond to a more
uniform field of velocities. All coefficients * =?!!. ?T, T. and , change during

change of the operating regime of the stage and the contour of the flow through

part of the stage (form of nozsle and diffuser) and for the time being can be obtained

onlry by experimental means.

Design of the stage for x- 0 is carried out by analogous equations. The

equation of impulses for this case has the form:

where

(7-38)

y, is the velocity coefficient1 of the noezle of the passive gas.

Equation (7-37) does not contain the basic geometric parameter of the stage

I'. A/F%. The connection between P.,1' and the coefficient of ejection~as

beforelis expressed by equation (7-35).

7-6. ject r S Variable Repimos
Limit Re&DIa

Under operating conditions the ejector stage frequently operates in regimes

which are difficult from the intended one. Causes of deviations from rated conditions

may be ohanges of the initial parameters (and consequently flow) of the ejecting

bfla



gas, parameters and flow of the ejected gas and presstires of the mixed flow behind

. the diffuser.

The number of independent parameters determining the regime of the stage and

the connection among theme parameters is established by equations (7-34) and (7-35),

which at .f - const are fundamental equations of the variable regime the

stage.

According to equation (7-34) and (7-35) in the number of dimensionless para-

meters determining the regime of the stop are included:

a) coefficient of ejection w A'.

b) compression ratio (increase of pressure) in the stage .$ - P4/Pk

c) net drop of pressures Pk/Po!

d) ratio of stagnation temperatures of mixed flows c, .

During change of regime of the stage,, the operating conditions of its separate

elements are changed, nozzles mixing chamber and diffuser. There occurs a redistri-

bution of looses in the indicated elements of the stage. Under the operating

conditions simultaneous change of all four parameters is possible. In this case all

elements of the stage operate under off-design conditions.

We will analyze the behavior of the stage during deviations of the regime caused

by change of pressure behind the diffuser p4 or change of pressure in the mixing

chamber Pk' assuming that the pressure of ejecting gas before nozzle p0 and the

ratio v, remain constant.

At constant pressure before the nozzles change of pro isure in the mixing chamber

pk or of pressure after the stage p4 leads to change of the quantity of ejected gas.

It is obvious that in this case the compression ratio in the diffuser p P/Pk

ch-,evs.

Accordinng to equations (7-34) and (7-35), between the coefficient of ejection

oc and the compression ratio 9, there exists a definite dependence, which is called

0 theo chOxa.eristic of the stage or _e.Jme di.rm. The form of this chara.teristic

toe .etermi••ed according to which of the two basic parameters (Pk or P4 ) cianges
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during change of the regime.

1. ,eration of the stage at constant intake pressure. We will follow the

character of the change of basic parameters of the regime during increase of the

coefficient of ejection from v.=O (idle running) to the maximum KxX,,p* at Pk

const.

At x-O, the gate valve on the line of intake is completely closed and the

pressure after the diffuser will attain the maximum value p, - p for the given

p 0 For increase of u it is necessary to decrease the counterpressure pA, i.e.,

IcI

the resistance of the flow through part, maintaining Pk constant; in this case the

D/

c •7l~~ n ,'aC fl t n

%A ý-444;~tt* ~-C'np

Fig. 7-28. Characterlatics of ejector stage.

IM (a) at.

compression ratio in the stage is lowered. On segment G;B of t he considered character-

istic (Fig. 7-8) velocities I.n sections 2 and 3 ( X2 and •. ,shown in Fig. 7-279

are increased (from the condition of continuity).

d..

Fx. is the limit coefficient of ejection.

-- i I l I IIKEY., (a), at.
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At a certain value of the coefficient of ejection x.=--p the velocity in the

initial section of the throat of the diffuser will attain the maximum value, and

the velocity in the outlet section of the throat is near to critical ().=i).

The ratio of pressures p3/p in the widened part of the diffuser is also near to

critical. Further decrease of the counterpressure does not lead to change of the

coefficient of ejection. In this section the characteristic of the stage ec-'(x)

is located parallel to the axis Ea (segment AB). This means that in the considered

regime the capability of the stage does not depend on the compression ratio, and

the coefficient of ejection is equal to the limit 1 (x-xp).

The maximum coefficient of ejection for a given value of 'p i c the

limit coefficient, the corresponding counterpressure is called the limit counterpres-

Sure. This regime, corresponding on the diagram to point B, is called the Limit

regime. The mechanism of development of the limit regime is presented by the

following. With increase of x in some section of the inlet of the diffuser, the

average velocity of flow becomes supersonic. The subsonic layer next to the wall

in this section has a minimum transverse extent and is not capable of transmitting

a distrubance against the flow. Therefore, lowering of the counterpressure

(P4<P4,,,) does not influence the conditions in the mixing chamber and tha

coefficient of ejection is maintained constant. It can be increased only at the

expense of increase of flow density, i.e., the pressure in the mixing chamber pk

Therefore on segment BA, the characteristic Pk - const is parallel to the y-axi,.

The process in the stage of the ejector on this segment of the characteristic

differs in principle, as can be seen from a distance, from the process on isegment

OB; after the *one of maximum velocity located in the initial section of the throat

of the diffuser, mixed flow is decelerated in the throat, crossing a compLcated

system of shock waves, to subsonic speed in the inlet (if the longth of th,, throat

corx'espond.3 to optium), after which further (now smooth) braking in the w-.dened

S sectilon . realized. The described picture is illustrated by the graph of d lstribu.-

tio. cv presaw.res along the contour of the diffuser in Fir. 7-29. If the "tngth

'411



of the throat is less than that, which ensures deceleration or flow to subsonic

velocity, then in tho widened part of the diffuser flow accelerates,, and then in

they system of shocks changes to subsonic (the widened part of the diffuser operates

as a Laval nozzle under off-design conditions). With l~owring of p4 the system of

shocks is displaced toward the outlet of the diffuser.

Returning to the curves of cha~nge of pressure along the contour of the

diffuser (Fig. 7-29), in the limit (p4  / p 4 11 1) and beyond-limit (P4/P4UP<l)

regimes, we see that disturbances from lowering of p4 are not transmitted higher

than the determined section, which is located in the initial section of the diffuser.

00

Fig. 7-29. Distribution of pressures along
tbn contour of the diffuser at different
operating regimes of the ejector stage;

_.A 4; x - 6. Experiments of Moscow Power
Engineering Institute.
KEY: (a) limit regimes; (b) blocking section;
(W sub-limit regimes; (d) transJlimit regimea;.

This sec-Lion (more accurately, the sone adjacent to it),, as was shown above, is

blocking. In Fig. 7-30 it is possible to see that durinig transition from the limit

regime to the beyond-limit, the velocity profile in the initial section of the

diffuser and the coefficient of ejection Y. practically do not change. At the same

time in the outloot of tiv throat at a constant coefficient of ejection,, the average
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velocity is increased. Experiments showed that in the limit regime, the velocity

profile in the outlet of the throat acquires a form near to parabolic which is

characteristic for flow in a pipe when the average velocity is near to critical

(Chapter 5).

In Fig. 7-31 is shown the "universal profile" of relative average vwlocities

)L)), Q.o is the velocity on the axis of the diffuser), obtained as a result

of superposition of velocity fields in the outlets of throats of different diffusera

in limit regimes*. As can be seen, all curves practically coincide and differ little

"42 -T - I. ... ._

0I 0P, a0 7 M- ,2

j. ;, 6 o7; X-: ,'•[ -J

0,0.37, 7, - , 1 .,9

11g. 7-31. Universal velocity profile in

the outlet of the throat in regimes near
to limit regime.

from the quadratic parabola irndependently of the relative length of the throat

I*.x1.•/d~. Such reconstruction of the velocity profile at transonic speeds is

explained by the influence of viscosity in transonic flow wh:i.h is very sensitive to

any external influence.

Calculation of characteristics of the ejector pk/po const is carried out by

*Ecperiments were conducted for different dimensionless pressures in the mixing
chamber Pk" Pk/poand optimum dimensionless distances between the nozzle section and
inlet into the throat i-x/d, (d1 is the diameter of the nozzle at the outlet).



equations (7-34) and (7-35). For the limit regime (xz= and A *4A.p) after

substitution of 3 - 1 and 3 - I these equation take the form (velocity 1.,,z 0 ):
I

= <.-I ),0 TI • 1. ,) (7-39)

K p go., V +,,) + ,,), (7-40)

where (s l

t:; ., are coefficients, characterizing the considered limit regimes, and

p,' maintains constant value for anl points of the given curve Pk / Pc - conet.

By equation (7-39) for a given value of pk / pc, the limit coefficient of

ejection xp is determined, and by the formula (7-40), the maximum counterpressure

POP is determined. With the help of these dependences can be constructed the

curves and \

Values of aAs f3(pk / p.) for idel running can be easily obtained from express-

ions (7-34) and (7-35) after substitution of x-A=O.

Characteristics sa(1) at Pk / Po conset, as a rule, are very gently sloping,

and therefore, with sufficient accuracy for practice, can be constructed by two

points: , =.O and IAt us note that with decrease of pk / p , the range

of controlled capability of the stage is lowered [segment of characteristic corre-

sponding to sub-limit regimes, P>P4>p, , is shor'-'ened (Fig. 7-28)]. In this case

the limit coefficient of ejection is decreased, but the maxiaum compression ratio

increases. At x=;O and sa e-vp the segment of characteristic Pk / PO - const

connecting point, Y=.=O and x---,, beoomes a point.

Line DBK on the regime diagram of the stage which corresponds to the limiting

*&es a A1,p and -=, for various p. / pc is called the limit line. In all

poi its of this line for COrTOct selection of the length of the throat, vel)oity
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2. Characteristics-of the stare at constant pyresuur after behind the ejector 0
P4/po - const. Just as in regimes pk " const, characteristics P4 - conet have two

branches: the sub-limtit and beyond-•mlit, corresponding respectively to the conditions

p4 ýP 11 1 and p. 4p-pl. We will trace the flow of processes in the ejector during

change of the intake pressure Pk"

Let us point F (Fig. 7-28) P4 > p111p; here '# < p, p >p, li. In order

to increase the coefficient of ejection at the given counterpressure, it is necessary

to increase the pressure in front of the diffuser, i.e., in the mixing chamber,

p k.The compression ratio t, in this case wiln be decreased, but the average speed

of the mixed flow will increase. It winl continue in this way with increase of i,

until the average velocity of flow in the blocking section attains maximim value

Upon further growth of x the process in the ejector changes. Increase of the

coefficient of ejection as before will be attained at the expanee of increase of

pressure in front of the diffuser pko but velocities in the blocking and exit

section cannot be increased and the capability of the apparatus increases only at

the expense and the capability of the apparatus increases only at the expense

of increase of current density.

Static pressure and stagnation pressure in section 3, p3 and P03' also increase.

In the widened part of the diffuser flow acquires supersonic velocities. As a

result there appears hear a shock (or system of shocks), and the position of which

depends on the counterpressure p 4 . Upon lowering of p4 the leap is d1splaced toward

the outlet of the diffuser.

Points of the considered segment of the characteristics p /po p const with

shocks in the widened part lie on vertical segments of the corresponding character-

istics •Po a const. In regimes with shook waves, losses in the widened part of

the diffuser increase, due to decrease of the stagnation pressure in the shocks and

S. d '



flow separation. The considered regimes are accompanied by increase by pk' and

the compression ratiota continues to decrease.

V Thus, characteristics of the stage corresponding to the condition P4 / p0

const. are depicted by lines whose form is shown by the dotted line in Fig. 7-28 (line

PBL); on segment FB the counterpressure p,> p.,P, and on section BL the counter-

pressure p4 <.p4,,.

Calculation of the characteristics p4 / Po const. is carried out with the

help of equations (7-34) and (7-35), if the geometric parameters of the ejector

Fig. 7-32. Change of coefficient of entrance
section of diffuser dependence from P',P and ,,•1 0

(ia/ , ; F1 ! F.0 ) and two parameters of the regime (f r example p4 / and

0 are known. In this case, by the formula (7-35) the value of Y is determined

(assuming ~ ,and by equation (7-34) is determined the value ofp/p
P.P P. P.o

Graphs of the distribution of pressures in Fig. 7-29 allow us to establish the

character of change of the specific impulse %,, in dependence upon - and pk / Poe

In Fig. 7-32 is presented such a dependence for the inlet part with an angle of

conicity of 200. Hence it may be concluded that for large values of x, correspond-

ing to the conditions of filling of the free stream of the inlet of the throats the

value of qOM is near to zero. With decrease of x increases the pressure behind

the diffuser and in the inlet of the throat (on the wall of the inlet). Increase

of pressure fro pk to the pressure in the inlet of the throat (regimes Pp Po const

are considered)is realised in the inlet of the diffuser.

At decreased x in the inlet of the throat there appear reverse currents: an

exces of gas entering into the active stream is ejected near the inlet of -Ae

LM 
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throat. Part of the small streams in this case is decelerated and then accelerated

in the direction, opposite to the motion of the main flow. Deceleration and turn

of the separate saMll streams are not able, obviously, to occur without an increase

of pressure in the direction of motion of the main flow. It follows from this that

indepndentl~y of the formi of the contour of the flow-through part of the ejectors

decrease of x always leads to intensification of compression in the initial section

of mixing.

Pressure in the chamber Pk has an influence on the value of b... only for

substantial deviations of the regims from the designed one. Decrease of pressure

leads to growth of This fact is explained by the increase of inflow into the

stream and corresponding intensification of reverse currents.

3. Reuimes with variable counteruressure at constant Position of tha xate

v.alve on the sction line* (i.e., for simultaneous change of Pk and p4 ). It 'a

obvious that for P4 < p4 ,,p such a characteristic of the stage coincides with the

characteristic cý - const. At P4 > P4  * with increase of p•, the coefficientp.

of ejection decreases, since Pk abruptly increases (curve ABE in Fig. ?-29). In

this case the compression ratio falls simultaneously. The more the gate valve is

opened on the line of inflow, the less intense is the change of the compression

ratio. All lines • - conat converge at the point z O(point E), where the

pressure pk equals the pressure of the environment.**

The region between the limit line and the axis , ,we wil o&a3l the regime diagram

of the stage. The regime diagram obtained by experimental =eans is shown in Fig.

7-33. One should underline that the calculation, performed with the help of the

experimental (variable) coefficients ?U, ?I:, satisfactorily coincides with

the data of the experiment.

•The considered regimes are sometimes called regimes with constant throttling
on the auction line.

**Letter ', is arbitrarily designated the magnitude of opening of the gate valve
on the suction line.

i ! ! I- I I- i ! ! ! ! ! i ' ' ' ' 4 , , , . .



Till now w assumed that the pressure of the active gas before the nossle
is held constant. According to experimental data change of po renders a very great
influence on the effectiveness of the stage, sines the flow and the distributed

energy of the active gas change.

In a ste of given dtmnsions, the flow of active gas is directly proportional

to POo If the pressure after the state p4 and the position of the gate valve on the

*8
4.
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FVi. 7-33. kperimntal diagram of regimes

of ejector stage.
suction line are held constant, then with increase of po the pressure in the mixing
chamber pk deareased, and the flow of ejected Sam increases. Upon attainment of
some optimum value of pos the pressure pk acquires the minimum value.

Fwrther increase in po leads to increase of Pk and decrease of the flow of

ejected gan.

The distribution of pressures along the diffuser allows us to explain the
influence of po (Fig. 7-34). At po>po0 a sharp increase of pressure in t.:e inlet
part of the diffuser is noticeable, which is 4aused by the appearance of a system
of shooks. Flow in the narrowed part behind the shocks becomes subsonic ard, is
a•oleorated, attaining critical speed in the throat. In the widened parWt of the
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diffuser aoculeration of flow is continued, which in ended by the system of shocks.

The limiting counterpressure is proportional to the initial pressure [equation

('t.•9)]. For a given opening of the gate valve anc p 4 - const, with increase of p0

the ejector from the sub-limit regime (p4>p4On,) approaches the limit reeime

(p4-P0uI,). Therefore the compression ratio increases, but pk decreases. Upon

Ik

-- I,,

" ' ---. J~i.Sl x"O,0

oi .. .. 41 M4(~

Fig. ?-34. Distribution uf pressure along
contour of diffuser at various initial
prossitres- of active gas.

further inoreaie of p(p.IIp>pi) p,, Li increased, i.e. the ejector changes to

the beyond-•bxit regime.

Visual investigations of flow in the ejector stage clearly show that in all

regimes with excessive, initial pressure (pO• p,) in the widened part there appears

a shook (Fig. 7-35pa). An analogous picture, as we have seen, is observed also

in regimess -• • at 0,4<4p•p. . The shooks lead to breakdown to vorticity in

the widened part of the diffuser (Fig. 7-35,b).

In a stage with a small distance between the nossle and the diffuser (x.-.)) ,

except for the considered first limit regime (the critical velocity will be attained



LdL

Fig. 7-35. Spectra of flow in ejector stage.
a-shook wave in widened part of diffuserlp -
5.02 at., Pk-" 0.81 at.; b--breakdown of fl~w
in diffuser (visualisation of flow by vapors
of aionium chloride, experiments of Moscow
Power Fngineering Institute.

in the outlet of the throat: x, - 1, a second limit regime also can appear, corre-

sponding to the critical speed of the passive gas in soetion 2(1 a WA 1)

7-7. 8ele9tion of Geometrical Parameters of the Slogor Stqe

For design of the ejector stage, as a ruls, parameters and flow of active gem

0POD TO1, ol1) parametere and flow of passive gas (poW Pk# T021, ) and the necessary

ampression ratio e,. are given. Then by equations (7-34) and (7-35) the main

peomtrio paramter of the stage F. (!r the condition A, - 1) is determined.

JS it is simpls to note, increase of design coefficients of ejection leads to

:noreae of the parwamter F.^ 'F,' ; increase of design compression ratios leads

to decrease of this parameter.

Before determination of F.,,/F., it is necessary to design the nozsle. At

iven values of P., P,, If, design of the nozule is carried out simply by tables of



ga-dynamic functions. In this case the preor, re in the outlet in the design regime

should be @elected somewhat larger then pk. FP, low-pressuei ejectors it is possibe0

to apply a narrowd nose e.

The influence of all basic geometric paraintors of the ejector,, which do not

lend themolves to calculation can be estimted by experimntal data. Different

variants of the ste•g are compared uander the rmot favorable conditionst at optimum

flow or ejecting gNo (optima initial pressiure) end at option distance oetween the

nomale and the diffuser. Comparison of the investigated variants are expediently

carried out by the .axidi oharacterietis• of the stags v,1P' Im I(xl).

The character of the dependence of the pressure in the mixing chamber on• at

constant possum p4 shown that PWpo changes periodioally during change of ;=-x

/d1 (d--4iamoter of the outUt of the nossle), If the flow at the Inlet into the

diffuser is supersonic (fig. 7-36). For large values of -, the pressure k

continuously increase with increase of X (in this case velocity at the inlet into

the diffuser is subsonic), 1Tho periodio character of the dependence of Ik on V at

Hl> 1 is explained by the wave structure of the flow. If during motion of the

nomsle relative to the diffuser shocks hit the wall of the inlet part, the Impulse

from the wall deoreases ( toy is lowered) and the pressure in the chamber inolqpases.

Conversely, if at the inlet into the diffuser are located waves of rarefaction, the

pressure in the mixing chamber inormases. Change of the coefficient of ejection

in this case occurs accorIng to the characteristic of the stag, which corresponds

to constant pressure behind the diffuser (p4 / po - conat).

Am experiments show, -VoporresPonds to the position of the nosuls, at which

the mixed stream is approximately joined to the throat of the diffuserl however

in this case this basic requ;reisnt should be satisfiedt the surface of mixing

of the aotive strem nust be sufficient for attachimint of the given quantity of

passive ga. It is possible to calculate approximately the distance between
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the nozzle and the diffuser throat* by the empirical formula

and, the, for control, to determine the diameter of the stream at a distance

from. the outlet of the nozzle d I + -,,

SPit-l 7-)6* Dependence of' pressure

in the mixing chamber p /p. -on the distance between-tR noble

and the diffuser •'-- x,'d,.

1--61 - 1 0,01--1.5s 3-Hm

- - -62.31 3 01-5..

During design of the ejector fg r a gieen coe•icient of ejection, the dameter

of the strepam should tmwhat exceed (approximately by 10%) the deameter of the

diffuser throat.

The curves presented in Fig. 7-37 curves illustrate the influence ot the basic

geometrio parameter F.,/;.• (at /-t - conet). With increase of F~ (or a for

other equal conditions the curves p,,(x) are lowered. 32cplanation of this fact

gives an analysis of the equation of continuity (7-40). Since in the limit regime

for optimum length of the throat, tse veloeity 13 •, and consequently, q, 3*W1,

*Negatlve values of i' correspond the location of the noszle, at whiot its out-
leot 1. farther to the right of the inlet of the throat.
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then for ,I we have (assuming that p P03
'~FP..u -P' .

With increase of flow of the active gas Gl, i.e., the ratio •/F.2 , P41 1.

(at p and x constant) also grows. Consequently, at constant counterpressure ph4

the difference p,-p,,, will decrease until p4 becomes equal to p 4,,. . DuringF°.

further increase of the ratio -A P4,p beacmes less than sero, i.e., the

apparatus changes to beyond-Limit regiaes, which should be accompanied by a decrease

of ', and increase of pk (P 4, const).

The influence of the ratio , (or H)X on thei value of pressure in the mixing

chamber can be traced by Fig. 7-37,b. With Increase of number M the minimum pres-

sure in the mixing chamber decreases and at K - Ham - 2.95 will attain the

smallest value. .tn this case the pressure in the mixing chamber and the pressure

in the nozzle section approach each other; the losses in thj stream decrease*

0 It in characteristic that with increase of -A a the influence of the parameter

F1/4• is abruptly lowered and at values - 0.2, it ia almost not detectable; the

curves 1.(0) in this section practically merge.

Eperiments showed also that the optimum values of cone angles of the nozale

are , - 12 to 240.

The effectiveness of the ejector stage is greatly influenced by the length of

the throat. For all flows of ejected gas, increase of the length of the throat

from 0, " 0 to l. 4 4 leads to a sharp increase of the maximum compression ratio

(Fig. 7-38). Further lengthening of the crater does not cause a noticeabaLe change

of the limiting characteristic for a given value of F.4/.. The valut, of .,, opt

changes during change of the basic geometric parameter of the stage . For

conditions in which ejectors usually operate with an isobaric section of idxing,

tho length of the throat should be selected within the limits of 4-8 diaxnlers of

th" throat. For stages with XO *..or is increased to 10-12.

!'2



Fig. 7-38. Influence of the length of the throat
of the diffuser on the limiting characteristic of
the ejector.

Diffusers of ejectors with a short throat operate poorly in variable regimes.

In this case flow at the inlet in the widened part can be supersonic, which leads

to formation of a shock and sharp growth of losses in the widened part.

During interaction of the stream with the wall of the inlet section, the latter

receives a part of the impact pressure, which is larger, the larger the angle of

conicity of the inlet section. Therefore, it is desirable to make the inlet section

with a small, convergence angle near 200. However in this case the length of the

ilnlet section is increased.

In those case when the ejector operates stably in regimes near to design, it

is possible to allow an angle T.1 of up to 50, providing a smooth inlet section with

the throat.

For a normal throat (0.1 4d.A) the best characteristic is obtained with a

short inlet section and angle o - 19". For l.. - 0, good results are shown by

an elongated inlet section.

Results of the investigation of different outlet sections of the diffuser

showed that outlet sections with aperture angles of 50 and 8' iare best. Smaller

angles of conicity TA0 ana TY are expediently chosen for a small length ot' the

throat; in this case in the inlet and outlet parts of the diffuser there occurs a

partial equalizing of the mixed flow.
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CHAPTSR 8

FLOW O7 GAS THROUGH TURBOMACHINE CASCADES

&-1, Geometric and Gas-Dgnamics Parameter. of Cascades.
Peculiarities of the Flow in Cascades *

The transformation of energy in a tiurbcmaohine stage oocurs as the result of

the interaction of a flow of gas with the stationary and rotating blades, which

form the guide and rotating cascades.

The cascades of turbomachines in a general case are a system of blades of

identical shape, evenly distributed on a certain surface of revolution. A particulAr

case of a three-4imensional cascade is an circular cylindrical cascade with radially-

fixsd flades, located between coaxial cylindrical surfaces of revolution.

In flowing through a cascade the flow of gas chenges speed and the direction

of its motion. The reaction acts on the ceacade. On the rotating cascades of a

turbine this force accomplishes work; rotating cascades of compressors, conversely,

increase energy of the flowing gas. In stationary cascades with an energy exchange

with the environment this does not occur; here there are realized necessary conver-

sions of energy for obtaining required speed and turn of flow.

A classification of cascades can be made according to different parameters.

Depending upon the rated conditions of the flow around and the corretponding

ge(•mtric parameters of the profile and channel, three main types of cascades are

diettnguiahed.

"Sec. 8-1 was written for the first edition by G. Yu. Stepanov.
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a) nozzl. cascades--are used in turbines both as noszle or guide (stationary),,

and also reactive moving (rotating) cascades;

b) impulse cascades--are used in turbines as moving (rotating) cascades;

c) diffuser cLqasc --are used in compressors both as guide (stationary), and

moving (rotating) cascades.

Depending upon the general direction of motion of the gas in reference to the

axis of rotation the cascades are subdivided into axial and radial. In certain

Fig. 8-1. Geometric parameters of a cascade
a--circular (cylindrical) cascade; b-rectilinear
cascade- c--two-dimensional cascade.

designs of machines, the flow of gas moves at an angle to the axis of rotation

(diagonal cascade).

Some of the most important geometric parameters of circular (cylindrical) cas-

cades are: average diameter d, length (height) of blade 1, width of cascade B,

pitch of profiles on average diameter t, chord b, angle of incidence A, and other

parameters ot the profile and channel (Fig. 8-1), and also the form of meridional

contours of cascades.

There exist various methods of assigning the form of profiles of blades.

Most widely used are the coordinate method (Fig. 8-2,a), and also the method of

constructing a profile by adjoining arcs of a circle (Fig. 8-2,b).



If the ratio of the average diameter of cascade d to height of blade , is large

* then for simplifying the problem it is possible to assume the cascade rectilinear.

Here the shape of the vane channel by height is kept constant. In simplest case,

assuming that diameter of cascade, the number and length of blades infinitely in-

crease, we obtain a two-dimensional infinite cascade (Fig. 8-1, c).

The transformation from a cylindrical to a two-dimensional cascade is realized

in the following manner. We draw two coaxial cylindrical sections of a circular

a)

Fig. 8-2. Different methods of prescribing
profile of blade./&a--coordinate; b-by arcs of circle.

cascade a ong the average diameter d and along a diameter d+ Ad. Assuming

that Ad. is small, we shall develop into a plane the obtained circular cascade of

minute height. By increasing the number of blades to infinity, we obtain a two-

dimensional infinite cascade, shown in Fig. 8-1c. Hypothesis of two-dimensional

sections, assumed as the basis of investigations and calculations of contemporary

turbamachines, was for the first time fruitfully used by N. Ye. Zhukovekiy in 1890.

Tte value of this hypothesis has been confirmed by numerous experiments.

Geometric characteristics of cascades, as a rule, are given in dimensionluss

form. For example, relative pitch of profiles is determined by the formula

or Is

The relative height (or length) of a blade
- /

or .-.

whr,"o C2 is the width of minimum (narrow) section of channel (Fig. 8-1).

'12.4



A rectilinear cascade is located in the system of coordinate x, yp, z, where

the direction of x is called the axis of cascade (Fig. 8-1,b). All profiles must

coincide with progressive transference along axis of cascade* Cascade pitch t is

distance between any two corresponding points.

With a given profile, the shape of the vane channel of cascade depends on

relative pitch and angle of setting of the profile, which is determIned as angle Pb,

between shaft of cascade and chord of profile (Fig. 8-l,c).0

Process of a gas flow through cascades of a turbmachine is very complicated.

The theoretical solution of problem of a nonstationary three-dkmenzional w)tion of

a viscous compressible fluid in a cascade represents great difficulties. The correct

approach to the solution of this problem consists in investigating simplti'ied models

of an actual process, which conserve its the most essential features with a consid-

eration and subsequent analysis of influence of secondary factors.

At present the most developed is the theory of a two-dimencional stationary

periodic flow of an ideal fluid through a cascade at subcritical speeds, Such flow

may be considered as the limiting case of an actual flow in caiscade with little

influence of the viscosity (at large Re numbers).

This simplified scheme makes it possible to establish main characteristics of

a potential flow in a cascade, ." However, the obtained solutions need eOssential

corrections The maximum errors occur owing to the ignoring of viscosity. Therefore, an

important problem is experimental and theoretical evaluation of influence of viscosity.

We shall oonsider certain peculiarities of a two-dimensional pote,ntial flow of

ideal incompressible fluid an exemplified by the flow around a reactive cascade

(Fig. 8-3). Owing to the periodicity of flow it suffices to study the flow in

one intervane channel or the flow around a single profile. In Fig. 8-3# with solid

curves there are drawn lines of flow %if - const, with dotted curves showing isopo-

tential linuer ), const, normal to the lines of flow. A fairly dense net of these lines



Fig. 8-3. Flow of ideal incompressible
fluid through a guide cascade.
a--iuopotential lines and lines of flow
in cascade; b--hodograph of speed; c--
distribution of relative speeds and
pressure coefficients along profile.

characterizes the flow well. Speed o_ at any point of flow is equal to:

dC P dd

whore S and n &we curvilinear coordinates respeotive1 along lines of flow and the

isopotential lines.

The differentials apprzoximate3.y can be replaced by finite increments and there

can be obtained: -A AW
4,S 3



At At aqr - const at each point AS- An. In this case individual

cells of orthogonal not of lines ,D - conht and V - const at the limit (at

AS- 0 and An-+O) becomes squarest therefore the flow net of an ideal incom-

prossible fluid is called square.

Another important characteristic of flow is the design of the speed., or hodograph

of speed (Fig. 8-3,b). To each line of flow and isopotential line there corresponds

in plane of hodograph the locus of ends of vectors of speed on this line. Correspond-

ing loci in plans of hodograph also will form orthogonal net, which may be considered

as the not of certain flow in plane of hodograph, limited by locus of ends of

vectors of speed on surface of profile and caused by the so-called vortex-source at

end of vector of speed oI at infinity prior to cascade and a vortex sink at end of

vector of speed 02 after the cascade. Point 0 , a1 and 02 will form the triangle

of speeds of the cascade* On the basis of equality of flow rates of fluid

prior to and after the cascade t ,- nO

it follows that projection of "odeds 1 and a2 onto the normal to the front (axis)

of cascade are equal or that' the straight line passing through ends of vectors a1

and c2 in plans of hodograph is parallel to the front of cascade. In considering

hodograph of speed of a cascades it is possible to reach the conclusion that at

points along back edge of profiles the tangents to which are parallel to directions

of speeds at infinity prior to and after the cascade the speeds should be hiSher

than o1 and 02 respectively.

Of great interest is the distribution of the speed or pressure on the surface

of profile. In Fig. 8-3,c there is shown exemplary distribution of relative

velocities c -Land relative pressures P_" as a function of
CPa

length of arc of profile S. If magnitude a1 and direction p, of the speed at infinity

prior to the cascade are known and also position of point of descent of flow 02

(on outgoing edge), then the flow through a given cascade is determinate . In the

flow of ideal incompressible fluid with a change in magnitude of speed a, the



form of the lines of flow and of the isopotential lines, as well as the vmgnitude

0 of relative velocities or pressuresdo not change.

At a finite distance from the cascade the field of speeds and pressures is

nonuniform. The lines of flow (at P4,9O') have wave-like form; they periodically

are deflected from their own direction at infinity. In accordance with conditions

of continuity and in the absence of vortexes, the average speed along aWv line ab

(Fig. 8-3,0) between two points, distanta whole number of periods t of the cascade,

constant and equal to the speed at infinity. One of the lines of flow branches at

entry edge of profile, as it approaches it along a normal , At point 0 (called
I U

otherwise the point of entry) the speed becomes equal to seroda*A the pressure / m ,~imu

Beginnin.g from point of branching, at which S - 0 (Fig. 8-3to), speed on profile

abruptly increases. Depending upon form of entry edge, and also on the direction

of speed at entry (the re-entrant angle Pi) the speed near point of branching

*• may have one or two maxima. On the back edge of profile the speed on an average is

higher, and the pressure lower, than on the concave surface. General character

of distribution of speed along the profile can be evaluated, by considering width

of the intervane channel and curvature of corttour of profile. In partioular, the

narrowing of the channel, characteristic for turbine cascade of reactive type,

results in an acceleration of the flow; in the sector of channel between profiles

of turbine grid of impulse type with approximately constant width and curvature

man values of the speed and pressure vary little (Fig. 8-4); in a compressor cascade

the Intervane channel expands And the speed correspondingly decreases (Fig. 8-5).

The distribution of local speeds at points of the contour profile corsiderably

depends on form of concave and convex surfaces and the degree of narrowing of

channel arid also an the geometric parameters and cascade parameters.

Increase of curvature in the convex sectors of profile results in an increase

of speed, and conversely. With an abrupt change in curvature, for example, at

pcl,-jta of Intersection of arcs of circles, the theoretical curves of the dtitribution
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Fig. 8-4. Plow of ideal iincompress- Fig. 8-5. Flow of ideal incu-ress-
Ible fluid through an impulse cascades ibWe fluid through compressor cascade.

a--profile of impulse cascade; b-hodo- a-profile of cascade; b.-hodograph
graph of speed; c--distribution of of speed; c--distribution of relative
relative speeds along profile, velocities along profile.

of pressures and speeds experience a discontinuity. On the protruding angles of

profile the speed theoretioall increases ad infinitum. Owing to this the contours

of profile of contemporary cascades are made from smoothly changing curvature.

Along a trailing edge of finite thickness*, as on the leading edge, the speed

has one or two maxima and it theoreticall drops to sero at point of descent, which

is looated on trailing edge in region of maximum curvature. At a great distance

after the cascade direction of flow is determined by the angle p2.

Above there was considered the flow of ideal incompreenible fluid through a

cascade. In reality with a consideration of influence of viscosity the picture

*The case of an infinitely thin edge is not considered, that isas having no
practical value.



of flow in cascade may differ considerably from the considered came.

In the flow of real viscous fluid on surface of profile a boundary layer will

fors where there are concentrated lose of energies, caused by friction.

In sectors of the channel with an increase of pressure (diffusor seotions) there

may occur a separation of the flow. The diffusor sections depending upon form of

profile may develop within the channell the manifestation of diffusor regions/in-

,evitable on leading and trailing edges of profile. On trailing edge there always

occurs a separation of the flow; in the sone forming beyond the edges there

is a vortex motion. At boundaries of sone& beyond edges there occurs an abrupt

change in speed. In a real flow of viscous fluid such change in speed would result IM

the appearance of infinitely great forces of friction; therefore boundary of

separation sones break up into individual vortexes wich a-e removed by the flow.

As the result of the separation the pressure after trailing edges is found

to be lowre. At a certain small distance beyond the edges there occurs an equal-

S is&ation of the flow, accompanied by change of static pressure, of angle of outlet

of flow and speed.

In the equalising of flow after the cascade there develop losses of kinetic

energies, constituting a second portion of profile losses in the cascades (edge

losses).

In case of high speeds (M>0.5) the distribution of speeds in the cascade

experiences a chade(effect of compressibility is developed). Here beuidesuuaual

gra4ients of speeds along lines of flow increasethe form of lines of flow ohanges,

and also regions of mauxn and minimum speeds are displaced. At certain viwlues

M<1 in certain portions of surface of profile supersonic speeds manifest tLeaselves.

The character of flow around cascade in this case abruptly changes; at supet onic

speodn additi~onal losses develop in the shocks.

Profile losses characterize a tWo-d1msnsional cascade. In rectilinear #,nd

O cylikvh cal, cascades additonal losses will form, caused by finite length of, t-Iades
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(end losses) and the fanwise arrangement of casoade.

Lossea of energy in the cascades, during low speedsecaused by the influence

of viscosity and periodic nonutationarinese, and also by high turbulence of the flow,

and at transonic and supersonic speeds as well as nonreversible processes of change

of energy in the shocks, to a significant degree determine efficiency of the turbine

machine.

In designing blades cascades it is necessary to assure given conversion of

the energy of the flow withminimm losses. Hence there is the necessity of a

detailed study of process of flow around cascades and establishment of influence of

the profile's form and other geometric parameters of cascade on its efficiency and

angle of exit of flow in wide range of modes, determined by angle of entry of flow,

N and Re nuaber., et cetera.

Above in p&ar there was given a classification of cascades depending upon

character of variation of parameters of flow in the intervane channel and direction

of motion of gas in relation to the shaft of the turbomachine.

The classification of the applied cascades can be considerably broadened.

Thus, depending upon speed 0 number) all cascades should be divided into three groups:

subsonic, transonic and supersonic. Within the limits of each group the cascades

differ by angle of deflection of flow (i.e.pangles of entry pl and exit .

In addition, the applied cascades are distinguished by their relative height,

which is characterized by the ratio 1. t cascades of low height (lbi 1.0 to

1.5) and cascades of great height (T> 1.5 to 2.0).

At the same time various cascades are distinguished by the degree of their fan-

wine arrangement O: f; at small O(e< 10) the blades are made with a profile

varying in height (twisted blades).

Considering that characteristicu of cascades within definite range of vari-

ations of model and geometric parameters change insignifioantly, number of profiles,

satisfying the requirements of turbine construction, can be reduced to the

required minimtn.



8-2. Calacul4tlon of Potential Flow in Cascades
Accordinx to Chanel heory

In theory of cascades and in experimental investigation on them two basic

problems &rise. One of them, the so called direct problem, consists of determining

the field of speeds of potential flow through a cascade# consisting of profiles of

Siven form, and in a subsequent evaluation of the losses of energy during different

regime (angle of entry, X and Re numbers) and geometric ( pitch , angle of setting

of profile, height of cascade and so forth) parameters. Consequently, the direct

problem is very important in the study of variable systems of cascades and the

construation of their aerod•nimio properties.

ZJY!ie.! b•L* consists in the construction of a cascade, which corresponds

to a selected or given flow in a caaoade.* In this statement of the problem

practioall important is problem of construction of a cascade with a rational

distribution of speeds (pressures) along the surface of profile to assure minimum

0 ,losses of energy,

At prusentmethods of calculating the potential flow in cascades, using appara-

tus of functions omplex variable, have been developed. However these methods are

found to be cumbersome. They in detail have been discussed in special literature.**

SignificawtJ1 more simple are method* of calculation, which make it possible

with sufficient accuracy -to solve the direct and inverse problems, based on the

channel theory.* To present time thmre are known several methods of designing cas-

cades according to theory of channel. One of the first was the proposed method of

G. Flyugel' developed later by G. Yu. Stepanov.

*It is readily seen that the direct and inverse problems are mutually associated.

**Sjte, for example, monograph by N, Ye. Deych and G. S. Samoylovich "Fuundwsentals
of *rody!u%.1,cs of axial turborachines." (Machine.-Construetion Publ. House, 1959)p
and also 1L. L. Zhukovskiy (11).
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The problem of flow around cascades may be successfully reduced to the

caloulation/f-low in channel only at moderate values of the relative pitch. In

addition$ the channel theory provides the possibility of calculating the flow

only in intervene channel| in region of entrance section of back and in an oblique

eross section it is necessary to use additional methods, and accuracy of the calcu-

lation in theme sections drops.

In calculating the flow at entrance and in an oblique cross soetion of cascade

it is necessary with known approximation to determine the boundary lines of flow,

Awt

Fig. 8-6. [Chart] for calculating flow

around cascade by channel method.

In simplest case, the boundary lines of flow before and after cascade may be selected

in the form of segments of straight lines (Fig. 8-6). Direction of these lines at

entrance to cascade is given (angle pl), and at exit it may be determined by one

of the known nothods.

Actually, the isolated boundary line. of flow before and after the cascade are

distorted near leading and trailing edges, where the greater is the distortion

then the greater will be the relative pitch of the blade, and the oirculation

integral. Certain influence is exerted by flow conditions: angle of entrance, X

and Re numbers. According to the proposal of the LZ in the calculation of flow at

I I I I [ I • I 1 V I i I, I = I



entrance there is considered a certain fictitious entrance sector EDFL (Fig. 8-6),

whinh serves as an Immediate continuation of the intervane channel. One boundary

Iline of the sector crosses at an angle pg and is line ofundisturbed flow, and

second is the back of profile. The sector DN may be assumed equal to (1.5 to 2.0)t.

At exit of channel the boundary lines of flow KS (Fig. 8-6) are construActed

on the assumption that beams, orthogonal to back of profile, are isopotential.

The lines of flow KS in this case serve as the continuation of the concave surface

of neighboring profile. At a certain distance after the cascade (from point 5) the

lines of flow change to straight line drawn at an angle ,.

The distribution of speeds through the section of channel of cascade in accord-

anco with Sec. 3-5 is expressed by formula (3-43).

At small N numbers (M<O.4) the calculation of distribution of speeds can be

made by means of graphs, presented in Fig. 3-14. For a compressible fluid it is

necessary to consider the variation of density. In this case it is possible to

* use method indicated in Sec. 3-5.

The procedure of the calculation reduces to the following;

1. In the channel there are inscribed circles (Fig. 8-6). Through point of

tangency of these circles with the walls of the channels A and B there are drawn

equipotential lines (in the form of arcs of a circle). There are determined the

lengths of these equipotential lines a and the lengths of radii of curvature of

boundary lines at points A and B (r 1 and r2).

2. For each equipotential line there are :alculated the dimensionless

geometric pwrametrs: ., r,11 MI. ; kg= .... k.- -..
a 2t,. a

;3. There are determined parameters of gas at entrance into the casacce:

dimensionlaac spead 1, ..... ; , the redticed flow rate q = q (A) and ratio of densities

10d frtom the tablee of gas-dynamics functions.

Oorr ' iV ii calculated on tho basis of empirical formulas, for e)m( ) V, by
" -36)"(Sc. 8-6).
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4. The average reduced flow rate can be determined by the reduced flow rate

at entrance: a f.or#,£ sn ?I,
q., "- yia =. si- - q

5. The ratio of the densities P is determined by calculated average reducedP,

flow rate cm by mians of tables of gas-dynamics functions.

6. The volumetric flow rate Q through considered section a is determined by

the formula PA

where Q a t sin 31 is the volumetric flow rate at entrance into channel.

7. 1y formula (3-44). which in our designations has the form:

I 2K;W

a I ,g..,^, ._-_+__+_K

I + 16+4NR

(or from the graph in Fig. 3-14) we find 8,.

8. Speed of gas at the point A is determined by the relationship
Q

and by it there is determined the magnitude .

9. Speed (dizensionleus, and by it--the dimensional) at point B is determined

by the formula

(8-3)

An to the accuracy of determining speods in cascade by channel method it is

possible to judge from Fig. 8-7, in which there is presented a comparison of the

calculated and experimental data for an impulse cascade. An is evident from Fig. 8-?7

the marked divergence betwen the calculation and the experiment is observed only

near the leading and trailing edges which is entrely aa p-pected.



S. . ...... Itoo -- -•.M" . .

001

Fig. 8-7. Comparison of calculation of potential
flow in cascade by charnntel methods with the ex-
periment (-empirical curves;-calculated curves),

8-3. Forces Acting on Profile in Cascade.
Theorem of N. Ye. Zhukovskliy for a Cascade

For determining the- forces, operating on a profile, we shall isolate a portion

of flow, as is shown in Figs. 8-8 and 8-9. The outer boundaries of the isolated

em ", ,,I

Fig. 8-8. Forces, acting on profile in turbine
(nouzle) cascade.

region are the sectors ab and do, parallel to axis of cascade and equal to the

pitch t. and the lines of flow ad sxad bc. The lines ab and dc, strictly g.peaking, mwUt

be 'found at an infinitely great distance from the cascade, since paramettra of

flow• along these 3.Anis are assumed to be constant. The inner boundary of tfie region

O JI.m the e-ont'oui' of profile.
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Fig. 8-9. Forces, acting on profile in compressor

(diffusor) cascade.

Projections of the force, with which flow acts on a profile of unit length,

w shall designate as Pu and Pa. Magnitude of these forces can be determined by
equation of momentum. Since the lines of flow ad and be /uidistant then the

resultant forces acting on that portion of flow isolated by these lines are equal

in magnitude ond opposite in sign. In the projection in a direction normal to axis

of cascade variation of the momentum is equal to:

, mF = (C., - Cd• =- I (p, -,-. P.,

where Fa is a component of the force P in a direction, normal to axis of cascade.

The ass of gas per second is determined by the formula

M= ,ACOIt == p'Q1

therefore

"Pa f (PaC.2 - PaC'X1) + Ps -a- (8,4

The projection of the force P onto the axis of cascade can be expressed by

the equation .IPaP. =te,.,(C., -CIY (8-5)



Xquations (8-4) and (8-5) can be presented in another form , expressing the

forces Pu an• P , by the circulation integral 1, and parameters of flow at ,ntrance

and exit of cascade.

According to the equation of continuity
NOc.% C pPc" - Po",

whore p is the average density of gas.

The speed ca, contained in this expressions we shall determine as the arithmetical

average of the speeds at entrance and exitit
a.•t. + Ca2

It is readily shown that here

Circulation integral around the profile is equal to:

r==*(c,-c), (8-7)

since the circulations along the equidistant lines A and be are identical in

magnitude and opposite in sign.

After sieple transformations from (8-4) and (8-5) obtain:
(8-8P. =liP,- P,- PC.(C1,- C12)1;(-)

pl == p',:.. (8-9)

We shall use equation of energy (2-11). Since

and ell==-'2+C

then, •seignating C + w obtain:
2 C4 0/1, -' Ce., p )t (8-10)

After substituting thiL expression in equation (8-8) and taking into consider-

ation formula (8-7), we obtain:

SF, It)I ("

Force Pis conveniently represented in the form of the sum of two forces:

S vwhere

P1 , =3



and

The resultant forces Pa P we shall designate by P , and total resultant

force-by P (Fig. 8-9).

The force P we shall determine by the formula

After substituting here the values P and Pa1' we obtain:

put
+

where --is the mean vector speed.

Consequently., the expression for P during flow around cascade has the same

form, as in case of single profile (Sea.o -). U

:P (8-23)

Direction of force P is perpendicular to the direction of the vector speed

T. This follows from evident equality

tan !4-. Pa

Thus, the Zhuvkoakiy force, orating on- profile in a cascade is equal to the

Droduct of the average density of gaaa cJircuLation _ntetral around Profil!'j'_aJd

he mean vector sgeed. The direction of the force P is determined by rotating

the vector of speed I by 909 in a direction opposite to the direction of the

circulation.

We recall that the density 9 correspcands to average specific volume, i.e.,

Thus, we established that in distinction from a single profile, the resultant

force, acting on profile in cascade is equal to the sum of the Zhukovskiy force ly

and the additional force AP,, perpendicular to axis of cascade: S
I, + A1..



It is important to note that nature of the forces P and 6 Pa varies. While

the force P1 depends on circulation of flow and vanishes at I'-01 the force a a

does not directly depend on circulation.

The force, acting on profile, has been determined for the general case of motion

of gas. By means of the general relationships obtained there is readily obtained

the magnitude of aerodynamic force, acting on the profile, for certain particular

cases. Thus, for example, by changing from a cascade to single profile, by increasing

the cascade pitch, ad infinitum, we obtain p2'p1 and pv.-p,;. then 6 Pa f Pu M 0 and,

consequently, in the case of an isentropic flow around an isolated profile, the

resultant force, acting on the profile, is equal to the Zhukovskiy force:

whom~ p 'and a are density and speed of incident flow.

Direction of force is perpendicular to the direction of speed of incident flow.

In changing to the case of flow around a cascade by an incompressible fluid,

* • first of all we should turn our attention to the fact that in equation (S-22) the

second term on right-hand side ia proportional to the change in potential energy

of flow (taking in-to account hydraulic losses), i.e.,

k_ IP.& . -

For an incompressible fluid (p ,= p p) from equation of energy we find:

where p 2ti the theoretical pressure when there are no losses.

Consequently.,

APa--"-(P -" P.)= tAp'.

Difference of pressures 6P" "p 2 t -P 2 is equal to the lose of preousure in

camcade. Thus, in case of a flow around a cascade by a flow of an incoamprussible

fluid the supplemental force i negative and is determined by the Ioss of pressure

In cxvoxl (one should not confuse loss of pressure %P,, with the differiuce of
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pressures P2- pl)"

In the absence of losses p. -O and AP==.O. In this case the resultant

force for an inocmpressible fluid is equal to the Zhukovakiy force:

P=P, =p!'c.

8-4. Clssificationr of Losses and Fudamental
ghaeteristics of Cascades

In the motion of a gas through turbomachine cascades energy losses develop:

part of the kinetic energy of flow owing to viscosity irreversibly will be converted

into heat.

Certain results~under consideration in the present chapter, of the theoretical

and experimental investigations of a flow of gas in ocasades make it possible to

classify the losses of energy according to the following scheme:

A. ftofile losses (in two-dimensional cascade with an infinitely peat height),

including: 1) loss to friction in bound 4 layer; 2) vortex losses during separations

on profile; 3) vortex losses after trailing edge (edge looses).

B. End losses in rectilinear three-dimensional cascade (additonal to group Al).

C. Wave losses (additional to groups "AA" and "B" during transonic and super-

sonic speeds) in shock waves.

D. a caused by non-stationariness and high turbulence of flow.

3. Fan losses in circular (cylindrical) cascade caused by deflections of

geometric parameters of cascade from optimum values and radial leakage of gas.

It is necessary to esphais. that the profile losses in casoade are analogous

to the profile drag during flow around an individual airfoil profile (Chapter 5).

*Possibility of generalising Zhukovskiy's theorem in the case of a flow of
incompressible fluid through a cascade was pointed out for the first time by B. S.
Stechkin in 1944. An accurate solution was obtained by L. I. Sedov in 1948. The
basis of Zhukovskiy'a approximate theorem for a cascade in the flow of compressible
fluid was proposed by L. 0. Loytsyanskiy in 1949. The discussed genoralizationpre-
sented in the above paragraphlof Zhukovskiy's theorem for a cascade in adiabatic
flow of gas, was given by A. N. Sherstyuk.



The difference consists only in the facts during an investigation of cascades there

* are established the relative losses of energy, and the profile drag is oharactoriued

by a drag force, related to the velocity head of incident flow. Physical nature of

the profile losses and the profile drag is identical. Vortex losses during separation

of flow on profile and after trailing edge are equivalent to the pressure drag.

Consequently the profile losses may be considered as the sum of frictional losses

and "losses of pressure.0

Losses, related to groups "OB", "DI', and "'", are specific for cascades. Wave

losses (group "C") develop in cascades in a. specific form.. However this group of

losseso caused by irreversible processes in shocks is analogous to the wave imped-

ance during flow around a mingle profile.

In calculating the stage of a turbcmachine it is necessary to know the direction

gf flow at exit of caucade (flow angle at exit)ald the energy or pVwer charaqt.riejAst

of cascades. Below there are considered individual components of the losses and

*there are pointed out methods of calculating the basic aerodynamic properties of

cascades.

For evaluating of a turbine cascade in distinction from sipgle profile there

are introduced chiefly the energy characteristics. Compressor cascades are charaoter-

ited chiefly by power coefficients.

Power characteristic of a cascade is the coefficient of loossa determined as tkv

ratio of the portion of kinetic energy, which irreversibly has transformed into heAt,

to the available kinetic energy: 2 I

where p,,, p(, are the pressures of absolute stagnation before and after cascada;

X2t is the N number after cascade in case of an isentropic flow.

Consideking that numerator of expression (8-14) is the square of certain

fticitious nuuber M,, calculated on the basis of stagnation parameters:

24
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The formula for the coefficient of losses can be presented in the form.

The efficiency of cascade is determined by evident expression

I = I -C€. (slWa

During an experimental investigation of cascades there is determined the field

of stagnation pressures before and after cascade pOiA and p021 and static pressures

P1i and p~.i From these data by means of formula (8-14) there are calculated the

pointwise values C6.

The actual flow at entry and at exit of cascade is nonuniform: the speeds, flow

"angles -and static pressures vary acoording to the pitch, therefore values of local

loss coefficients of energy, and also other char'acteristics of cascade must be

averaged according to the pitch. For determination of averaged characteristics

there must be formulated the concept of an ideal (theoretical) process in a cascade

during nonuniform flow. As an ideal process it is possible to consider such an

isentropic process, during which in the investigated section there are maintained

constant, in comparison with actual process the fields of static pressures and direct-

ions of speeds.*

The efficiency of the cascade in a nonuniform flow is calculated by the

formula 
S aI ul adI

whtere 02 is the actual speed;

, P# -- density of gas in actual flow.

Introducing in this expression the reduced flow rate q aft •r elementary

*In another definition of an ideal process it is assumed that the entry and
exit angles of the cascades are equal to the average angles f, and determined
by equation of momentum.
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,transformation* we obtain: qj6tsnh in"ei n P si

V21 psiin s 1 dt I sin ;ldt

The last expression is obtained on the assumption I., const. The magnitude
a!1

= -i-; At,, q2j is the theoretical speed and reduced flow rate at point after cas-

cade.

For calculations on the basis of formula (8-.17) it is convenient to use

diagram proposed A. V. Cubarev (Fig. 8-10).

Diagram is constructed for separate determination of magnitudes

A=VjqvAL and B j im
Psi Pi

The order of construction and uses of the diagram are readily underst.ood

by means of Fig. 8-10. On the basis of the values po2i/p01 and p2 i/p 01 at the

point of investigated flow there are determined A1 and Bt respectively. Then

there is made separate summation of magnitudes A, sin and Bi sin .. Final
expression for cascade efficiency has the form:

EA, sin 1
fal

where n is the number of selected sectors within limits of cascade pitch.,

In addition to coefficient of losses of a cascade in calculating the stage

Ithere is used the coefficient of flow rate, equal to the ratio of actual flow rate

to flow rate in an ideal process. Since the flow rate of a Sas through on, and

the sam channel 0 dO,=;sq,,e, sin P,dt-=.glp&c. sin P, di,

then, by using formula (2-38), we find coefficient of flow rate in such a *orm:
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PC uAMPaMMA A

Fig. 8-10. Diagram for det~ermining losses in adiabatic
flow (k -- 1.4).
MY: (a) Diagram A; (b) Diagram Bj (c) Flow p&rameters
at-point of field.

By means of formula& (8-18) and (2-38) momentum after cascade can be presented

in this form: -- e.=k SI Mdi.

Then the utilization factor of impulses*

s.Pin. ;,d (8-20)

---- a--A-- sin ;,(ft

*iThe coefficient v frequently is called the velocity coefficient. Formulas
(8-19) and (8-20) are obtained by means of equations of continuity and momentum on
the assumption that in an ideal process the field of angles and pressures is kept
the same as in an actual process.



where (p,

It is readily shomi that the diagram constructed for determining q (Fig. 8-10)

makes it possible also to find p and T in a nonuniform flow. For determining

it is sufficient in diagram B t;o find the value -B,= q21j4 PO (at intersection of

experiiatenta0 values pt/pO 1 and p2i"pO1) adB - qt (at intersection of curves

P2i/po 0and p /pO1 - 1); then

V•flJ Uif lIJ

For determining T it is necessary to construct additional diagram of the

function yi 1? 1 O\ ; •

Since

then

The averaged value of flow angle at exit is determined by the equation of

momentum. Mean values of projections of speed after the cascade are equal to:

Then the average angle

aln24,dI

4~51



8-5. The Boundary Layer and Frictional Wsses in Casc'ades

The determination of the structure of the boundary layer forming in a profile .

the establishment of points of transition and separation of layer are important

part of the problem on profile losses in cascades. The scheme of the formation of

a boundary layer on a profile in a two-dimensional asecado is shown in Fig. 8-_l, a.

Using a graph of diatribution of speeds along contour of profile, we shall

trace character of change of layer on concave and convex surfaces of blades.

On the concave surface after the point of stagnation (critical point)p the

thickness of the layer increases slightly. At places of greater curvature, where

speed of external flow either remains constant or drops the thickness of boundary

layer increases, At these points there may develop a transition from a laminar

layer to a turbulent, and under certain flow conditions--even a local separation

of the layer. In nozule section near contraction section, where pressure rapidly

falls, and the speed increases, thickness of boundary layer decreases and attains

minimum values on descent from profile.

Fig. 8-3-1. Sohematic diagram of formation of
boundary layer on profile in cascade.
&--without separation; b--separation on back
of blade.
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On the back edge in the direction of contraction section the thickness of the

layer also decreases. Along back edge in an oblique cross section there is a marked

rapid increase in thickness of layer, which attains along trailing edge maximum

values. A certain portion of back edge in oblique cross section is floaed around,

as a rulenwith a positive gradient of pressure (diffusion sector of back edge)

which sometimes may result in a separation (Fig. 8-119b).

In designing a caseadepractically essential is the determination of location

of transition region of laminar layer into turbulent and conditions of continuous

flow around a profile. As the calculations and experiments show, point of transition

most frequently coincides with point of minimum pressures on back edge or it is

somewhat displaced into diffusor region. In those cases when flow is strongly

turbulised point of transition may be considerably displaced against flow (into

nozsle region).

/ shall consider certain results of an experimental investigation of boundary

W layer •Ln Ipulse ad reactive turbine cascades.

.Fi 7 .-2there are presented results of easurements in boundary layer on

back edge of profile TC.2A. The high degree of contraction of the channels in

cascade (Fig. 8-12,a) creates favorable conditions for the maintenance of a laminar

mode in the layer. However, at the exit to oblique crois section ( 1. - 0.5) laminar

layer loses stability and transforms into a turbulent layer. Zone of transition

is determined entirely satisfactorily by the described method in Chapter 5

and occupies about 4% of total contour of profile. The further flow in boundary

layer bears an obviously pronounced turbulent character (Fig. 8-12,b). Aftior region

of transition In oblique cross section on back edge there is noted an inteniie in-

crease in the momentum thickness.

Boundary layer on the concave surface up to trailing edge is laminar. Hence

it say be concluded that the point of sep•aration on trailIng edge is loiatec'

* asymetrically with respect to center line of profile.
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Results of investigation of boundary layer in an impulse cascade.composed

of profiles of the Moscow Power Engineering institute TP-OA, showed that also he)ro

with a calculated entrance angle there exist three zones of flow in the layer, which

are arranged in the same mannet, as in channel of reactive cascades.

With optimum entrance angle §I - 230 (Fig. 8-13) the distribution of speeds along

the back edge is that of a nzozzle. Transitional tone at all values of M is located

after the minimum section of channel at the entrance in an oblique cross section

and a change of flow condition according to the M and Re num]nars does not result

in a marked redistribution of extent of laminar and turbulent sections of the

layer. ,
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o,5--• . ..... Fig. 8-12. Distributivn of aooeds
! in boundary layer on back edge of

•lq. ... profile a) and distribution of
I momentum thicknesses along back

o .de b) for reactive cascadeTC-2 A.
0,O: (a) Results of calculation;0,.. (b) Results of experiments.
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At small entrance angles ( • 14) the entire boundary layer on back edge is

*found to be turbulent and the momentum thickness for trailing edges on back edge

increases by 2.0 to 2.5 times in comparison with P, - 23 (Fig. 8-14).

Essential changes in the distribution of the thickness j" are marked also on

the concave surface (Fig. 8-15). If at ' 230 (X2 0.52) W' were found to be

fie

4~u.
-, I i L 0,,, O

• 6. O'y 0 OX 0.1 000

Fig. 8-130 Change of momentum thickness on back
edge of profile of impulse cascade TR-OA at dif-
ferent M• numbers (experiments at, Moscow Power
Sngineerlng Institute (NEI).

of an order 0.7 10-3 , then with transition to • -140 the thickness "801r decreased

to 0.27 * 10-3. The total momentum thickness with a decrease in flow angle at

entrance increases by 60 to 70%. With an increase in , , " increases on concave

surface and decreases on back edge. However, the total momentum thickness increases

less intensely than with a decrease in flow angle at entrance. Hence it directly

follows thAt at a certain optimum entrance angle 2" is minimal. 'the dependence

of the thickness T' along trailing edges on p, for a reactive cascade is 9hown

in Fig. 8-15,b. The less is the contraction of the flow in cascade the mo's

Jntetniive is the change of 2" depending on*i
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Fig. 8-14. Profiles of speed a) and change in
maintum thickness along back edge b) for impulse
oascade at , - 140.
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Fig. 8-15. Dependence of V' on flow
angle at entrance 3, for impulse and re-
active cascades (experiments at
Moscow Power-Engineering Institute.
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The influence of two other flow mode parameters (Re and M2 ) on structure

of layer in cascaden can be traced by graphs in Pigs. 8-13 and 8-15,0. With an

increase in Re2 and 4 thickness 8* markedly decreases.

An Intensive decreaes in , with an increase in H is explained to a

significant degree by the change -in gradicnts of speed in the intervane channel.

Frmc the distribution of speeds given in Fig. 8-13 there is readily seen the increase

in contraction on back edge with an increase of t .

With a transition to supersonic speeds the magnitude i" markedly increases

at a result of interaction between a compression wave and the boundary layer. In

place whe~re the shock fails onto back edge in oblique cross section there may

be observed a separation of the layer.

Very significant influence on structure of boundary laver is exerted by the

degree of turbulence in the flow; its magnitude in turbomachine stages may attain

large values.

Influence of degree of turbulence on structure of boundary layer* on back edge

of reactive and active profiles can be evaluated by Figs. 8-16,a and b. With an

increase in turbulence there occurs a rebuilding of profiles of speed in the layer:

a filling-in of the speed profiles occurs (Chapter 5). An increase in the degrae

of turbulence results in reducing the laminar layer section and an increase in

thickness of turbulent layer.

The character of change in profile losses and frictional losses depending on

degree of turbulence for two types of cascades can be evaluated by curves in Fig.

8-16,b. In a reactive cascade TC-lA an increase of Eo from 1. to 9% results in an

increae of ; from 2.6 to 4%. For active cascade TP-OA, the curve C, has minimum

at E0 = 3%. In the sector 1% <E,< 3%. There occurs a turbulisation of the

layer at point of separation on back edge and the losses decrease, At 90 >3% with

an increase of Eo the frictional losses increase more intensely than in a nozzle

*The experiments were made by V. A. Yrublevska.



reactive cascade.

The calculation of the boundary layer in cascades is made by means of the

procedure presented in Chapter 5. Here, as a preliminary measure there must be

calculated or experimentally determined the distribution of the speeds along the

contour of profile. It is used to make a calculation of the momentum thicknesses.

0.

9

MMI "

Fig. 8-16. Influence of degree of turbulence on
distribution of thicknesses of a"• along back
edge A) and on profile losses azZ frictional losses
in reactive and impulse cascade TC-IA and TR-OA
%) (experiments at Moscow Power-Engineering
Institute).
Xff: (a) Reactive; (b) Tmpulse

An a preliminary it in necessary to deter-mine correctly the location of tr4asitional

region on back edge and concave surface.

If there are no experemental data for -a'" in the son* of transition they

S~may be determined by the formulas presented in See, 5-10. During high degr~ees

of turbulence the transition is rea~lized near the ]eadj• edge; in this cast necessity

S 9
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of considering the laminar section becomes superfluous.

The ioom of kinetic energy in boundary layer (frictional loss) is determined

by the equation of energy, written out for exit section of cascade:

AE1  4 P~a 14- us) dyI

where u is the speed at given point of layer;

uI is the speed at external boundary of layer;

y is the coordinate, normal to profile at a given point.

In the absence of lossew the kinetic energy after the cascade will be:

-oaa (8-22)

where G - the actual flow rate through one channel-is detarminecl by the formula

0-. 00 -- g (Pu, - p')),, dy4. (Pil& -,,,,,. tly (8-23)

where Gf, ut are the theoretical flow rate and speed at exit of cascade.

The coefficient of frictional losses is equal to:

After expressing A Etp and Et by formulas (8-21), (8-22) and (8-23) aftur

certain transformations there may be obtained:

(8-24)' IS..p--, E(,•, k8mt' " )

where

ka j, ; ))
I,=r " ! it are dimensionless speeds after cascade for actual and

theoretical processes. The sign r indicates sunuation along

the back edge and the concave swuface.

Results of verifying the accuracy of the calculation of layer for several

Ii r r'l



cascades may be seen in Fir. 8-13 and 8-14. A comparison shows satisfactory

agreement between the experimental and calculated values of 8"* over entire region

of subsonic speeds (up to M - 0.955).
2

After calculating the thickness the determination of frictional losses

presents no difficulty, if the magnitude H*rz is known. For calculating turbine

(nozsle) cascades it is possible to ussume H* - 1.8.

In diffuser (compressor) cascades the magnitude H* is somewhat higher. Thus,

frictional losses as a first approximation may be considered proportional we the

momentum thickness on trailing edge of profile and from its magnitude to judge

the relative efficiency of the cascades.

"8-6. edRe !es_-in Cascades

In the descent from trailing edges of the profile there occurs a sepazation

of the boundary layer. As the result of separation and interaction between the

layers, flowing down from the concave and convex sarfaces, with the external flow

after trailing edge there develop vortices, which will form the initial sector

in the wake of trailing edge (Fig. 8-17).

Within the limits of initial sector and at that place after it, where there

will be form vortex street, the interaction between edge wakes and core of flow

reduces to an equalizing of the flow after the cascade. In certain section after

cascade the vortex wakes of neighboring profiles are closed and field o±' speeds,

static pressures and angles become uniform. In the sector prior to a complete

equalixation average 4tatLic pressure of flow increases, and the exit angle decreases.

For supporting the vortex motion after the edge there is expended a pcrtion

of kinetic energy, of flow; additional losses of kinetic energy will form on boundary

of the wake of edg* a•nd of the core of flow, where there develops an intense turbulent.

exchnge.

The foration of a vortex motion in wake of edge is corroborated experimentally.

[ I~~~ I61I II
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Pig. 8-17. Schematic diagram of flow of gas after
cascade.
KEY: (a) core of flow; (b) wako of edge; (c) sector
of total equalization; (d) primary sector; (o) initial
sector.

In Fig. 8-18 are presented curves of distribution of total and static pressures,

angles and temperatures of stagnation at & certain distance after edges of a reactive

cascade. At small distances from edge there is detected a significant noinuniformity

of fields of pressures, angles and of, especially important, stagnation tempera-

tures. In wake of edge the pressure and stagnation temperature which is character-

istic for vortex motion decreases. A change in T is explained by the nonuniformo

distribution of speeds and vortex effect after edge (Sec. 5-1 and 5-16). The rapid

equalisation of To attests to the intense exchange between the core of flow and the

wake of edge.

With a small thickness of edge, the thickness of boundary layer and distribution

of speeds close to the points of separation of flow as well a. t•he pressure difference

between these points ,ixert a decisive influence on the structure of the wake of the

edge.

As the thickness of the edge increaaesethe losses associated with sudden ox-

panaion of flow acquire a marked effect.

In Fig. 8-19 there are shown results of drainage of trailing edge. As is
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Fig. -18-. Distribution of parameters of flow
after trailing edges of reactive cacade.

evident, pressure along edge abruptly changes. Prom side of concave surface the

flow is a nozhle flow ard rrom side of back edge diffuser. Consequently, the point

* 0of separation is dispiiAaed to back edge of blade.

With a change in thickness of trailing edge A (Fig. 8-17) the distribution of

speeds along contour of profile varies and, consequently, there occurs certain

reconstruction of boundary layer close to trailing edge. The frictional losses

here vary in accordance with variation of energy thickness on trailing edge. Ex-

periments by V. S. Yelizarov (Fig. 8-20) have clearly corroborated that with increase

in A the sum go" 1) ,'ES varies.

', .... ---v . . .. 0, - - .. .. . . . . ...... .
.. ,; , * ==-O

A41 0,O,5

. v? F - i.. . ,l'' .... - • ..

* 'C ,• .. )

*~ b)

Fig. 8-19. Distribution of pressures on trailing edge
of reactive cascade during differenL model of flow.
KEYi (a) Numbere of the points.
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Fig. 8-20. Variation of energy thickness on profile
and after cascade (a) and W'• depending on the
parameters x (b) according to V. S. Yelizarov.

A significant influence on structure cC flow after the edge is exerted by the

pitch of the blades. With a small pitch (Fig. 8-19) after edge is detected

rarefaction, which incrasaes somewhat with an increase of M2 . As the pitch

increases average pressure after edge increases and witIh& a specific pitch attains
values, larger than the pressure after the cascade. Consequently, with an increase

of pitch both the relative and also absolute values of edge losses must decrease;

these circumstances have been corroborated experimentally.

Certain influence on edge losses is exerted by the shape of edge, which
determines under known conditions the location of points of saparation. Experiments
show that in case of a rounded edge at subsonic speeds the initial sector of the

wake is narrower (point of separation displaced along flow) than along a flat

truncated edge.

A theoretical calculation of edge losses is very complicated, and this problem
up to present is still unsolved. Available semiempirical methods make it possible

to evaluate the edge losses and angle of exit of cascade on the basis of experimental

data, obtained for specific classes of profiles.

Parameters of an equalized flow after cascade may be found by means of a common

solution of equations of continuity, momentum and esnrgy. For a fluid, enclosed



tetween control surfaces (Fig. 8-1'7), parallel to each other at a distance, equal

0 to the sector of equalization, the indicated can be written out under the following

assumptions: a) the flow density varies slightly in the process of mixing (between

sections II-II and. II '-III); b) field of speeds and pressures between edges and

in section II-II are uniform; c) back edge of profile in nozsle section is made

rectilinear.

In this 'case equation of continuity can be presented as:

p.I, -- At) sin , cjpt•sin 3,,

or ,(I -. ,,) sin P2. c,, sin P,,

(8-25)

where c

At in the thickness of edge in plane of exit section (Pig. 8-17).

Equation of momentum in direction of axis of cascade gives:

c 2os P p (I - At) sin P1 = C cos Papt Sin 3 n (8-26)

0 Equation of momentum in direction, perpendicular to axisof cascade, can be written

in the form:

c2psIn.p2.(t -J-p, (Y -- at) +A. pXP4
-- cjp sin,' ,,•t (8-27)

From equations (8-25) and (8-26) there readily is obtained:

Pg=-- arc-,[l(! -,I .p,1 (8-.a8)

Equation (8-25) and (8-27) make it possible to find the increase of pressure

after cascade: - p.-. P,

T PJ (8-29)

For determining the theoretical speed at infinity after a cascade, W use

equation of enera, which under the adopted assumption p, p. p can be

presented in the form: ,30)

+.(8-30)

e 2" 2 "5



where 4. is the theoretical speed in the section Il--I.

By means of equaLions (8-27), (8-28), and (8-30) we obtain the coefficient of

the edge losses , ,I$,i'

In equations (8-29) and (8-31) dimensionless pressure after edgna pkp must be

determined by experimental data.

According to (8-31) with an increase of thickness of trailin& edges At it is

expedient simultaneously to increase the relative pitch t and to decrease the

blade angle in order to maintain a given exit flow angle and to assure moderate

losses.

The above-mentioned formulas, obtained by G. Yu. Stepanov, satisfactorily agree

with experimental datal however practical use of equations (8-31) in made difficult

because the magnitude -p may vary in very wide ltmits depending upon the mode and

gseoaetric parameters of the cascade.

V. S. Yelizarov proposed the method of approximation for determination of edge

losses as the difference between losses at a certain distance after cascade

(profile losses) and frictional losses. Coefficients of the profile losses and

frictional losses can be expressed in terms of corresponding arbitrary energy thicknes-

ses (formula (8-20)].

In accordance with considered method the energy thickness in wake of an edge

is expressed by the formula

cp~ H T,,

where a" is the energy thickness in section of wake of edge at selected distance

after cascade.

The relative energy thickness in the wake

. (8-32)ire',;

e. 11
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depends basically on the complex

- -jjj~i~.(9-33)
t/" COP• AI"

A corresponding dependence, obtained experimentally for a Oontinuous2y strea-

lined profiles, is presented in Fig. 8-20,b. The formula,, approxiiaating this

dependence, has the form:
T"== (0,1 VI+ 12,4 Z+220). 10-,.•.p "(8-34)

Consequently,
a3 ~ ~P(~kp+I).

The coefficient of the profile losses in determined by the formula

Cu" (8-35)

where a,--vidth of narrow section of channel;

• is the coefficient of frictional losses determined by formula (8-24).

Thus, the considered method of calculating the profile losses is based on

establishing an association between edge losses and the frictional lossesp* and

O besides these lo•,e are determined separately.

An evident advantage of the method consists i the fact that it makes it possible

to consider influence of different geometric and mode parameters of the cascade on

the edge and profile losses. With a change in these parameters theru change the arbir

trary thicknesses of boundary layer, in terms of which there are expressed coefficiento

np and ;P

However, actually the form of the function 6"0 (7.) a changs depending not

only on the type of cascades but also on the mode of flow around; this is a defect

of the method.

For cascades with thick edges, thickness of which considerably greater than

the thickness of the layer ( •. ,,•.a> 0.3), a method of solution has bee,,

*For cascades with sharp edges a method of calculating the profile losufs was
* worked out by L. G. Loytsyanskiy. V. 5.Yeiizarov's solution is an extensioz, of

L. G. Ioytsyawiukiy's method for cascades with edges of finite thiokness.

"i~ i i i Ill III I l III Ill I



proposed by A. W. Sherstyuk.. There is considered the flow in one intervane channel

whose boundaries after the trailing edges are straight lines made by the exit flow

angle p1, to the front of cascade (Fig. 8-17).

As, " .imately the exJt flow angle is determined by the empirlcal formula

p 2 ,,uarcsii~mj').(8-36)

where m is the experimental coefficient.

With a great thickness of trailing edges it may be aswumed that transitions

fro section 1-1 to section 1'-l' and from section 2-2 to 21-21 (Fig. 8-17) cause

the same loss of energy, as during an abrupt expansion of the flow. After determining

the magnitude of these losses there can be obtained the approximate formula

I / (0.25S i . 1I)')

+,-.,.b k +0,' (2m - -). (8-37)

Here (Fig. 8-17) a,. • is the effective "thickness" of trailing

edge, determine~ as the distance between the points of separation 4,0 zz0.7 A:

go• as + is the effective "width" of narrow section; ?. is the

coefficient of speed for infinitely thin edge.

The simplest empirical formula for determining edge losses was proposed by

G. FyIuol': £

where K - 0.2. However, experiments show that the coefficient K may vary within

very wide limits depending upon geometric and mode parameters of the cascade (Fig.

S-Q1).

A comparison of different method of calculating edge losses shows that the

best results are given by formula (8-34), which takes into consideration the

influence of Re2 and H2 numbers and the basic gepoetric parameters.

The influence of Re2 and M numbers (Fig. 8-21,b and a) is explained chiefly by

the displacement of points of trnnsition and separation along the edge, and also



by the variation of frictional losses (Chapter 5). Expecially characteristic is

the curve for A - 0.42. The first maximum of curve is explained by

displacement of points of separation against flow (laminar separation). The turbuli-

sation of layer in zone of separation reduces to a displacement of points of separa-

tion along the flow (critical region of the Re number).. The second maximum is

associated with the formation of local supersonic zones on edge and the displacement

of separation against the flow (A 4 increases). Transition to supersonic speeds is

accompanied by improvement of the flow around the edge. Thus, the flow around a

thick edge at different Re 2 and is qualitatively reminiscent of the spectrum of

the flow around a poorly streamlined body (Sec. 5-14).

SV
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Fig. 8-21. Change of edge losses depending on
thickness of edge And relative pitch (a),
N2 numbers (b).
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Influence of thickness of edge on the exit flow angle (Fig. 8-22) is found

to vary depending on manner of the edge's formation. In trimming the edge by method

I the angle .%, decreases wiTh a decrease of 6. A trinming of the concave surface

(by method ii) results in an increase of p. as 4 decreases. It must be emphasized

that the effective angle, determined by formula (8-36), as a rule, does not coin-

clde with the actual ;,, angle in which 5 p, (Fig. 8-22,b). Correction factor

! in formula (8-36) makes it possible to convert frog P to P.. In accordance

hr a, a- -OUMA Cnx dpoeftsiqota
F; e 0-,-o,df*.-i " ,. p om. ae , I ,

1/ - , e- , 5Ot•• 0 .. _..pM,9 1,9

i f -. . . a - - , x - - --.- I

1,. "

r .... 7l••

tot .to"5

B)

C)

Fpg. 8-22. Dependence of exit flow angle on

the relative spacing and thickness of edge

(A) Re numbirs (B) and M2 numbers (a).
KEY: (a) Method of edge formation.



with the physical nature of phenomena after edges the coefficient a depends on

Re and M1 numbers, and also on thickness of edge a (Fig.8-22) and shape of back edge
2 2

in nossle section. EBperiments show that for profiles with a rectilinear back edge

in nossle section the angle p 2,4 (t-z 1) 1). For convex back edge p, is somewhat

less than P,.,"

84-. Certain Results of an Experimental Investigation
of Two-Dign ional Cascades at Subs onic Speds

We shall consider the results of an experimental investigation of profile

losses and flow angles at exit depending on geometric and mode parameters and shape

of profile for ceri in reactive and impulse cascades.

.. "'T

__ l '.Jz:.V...N

Fig. 8-23. Influence of pitch on distribution
of pressures about profile in cascade of reactive
type (a); profile losses and flow angle at exit
(b).

The influence of pitch and angle of setting of the profiles. Distribution

of pressures about profile to reactive cascade (Fig. 8-23) shows that at I - 0.7

to 0.8 nozzle flow is along entire contour of profile, with the exception of

short sections close to leading and trailing edges. As the pitch increases the

O point of minimum of pressures on back edge is displaced against flow, regions of

nozzle flow are reduced in oblique cross section; gradients of pressures Li nozzle

47.1.



and diffuser regions increase. Consequently, region of transition is displaced against

flowand the frictional losses increase somewhat in nozzle section. The flow around

the concave surface with an increase in the pitch becomes favorable,

because the noszle flow near the trailing edge increases. With small pitch

the flow along back edge in nozzle section is more contracted; however gradients

- [ 0.04 -'

'Ie,

Fig. 8-•4. Influence of setting angle of profile
in reactive-type cascade on distribution of pres-
sures (a), profile lose and flow angle at exit (b).

of pressures decrease.

Consequently, with an increase of the pitch during a continuous flow around

of profile the frictional and edge losses vary differently •,p (frictional loss)

at first decreases, since the relative value of the momentum thicknesn !--
as

decreases and with large pitches increases owing to an increase in momentum thick-

ness; the edge losses with an increase of T decrease continuously. As a result the

profile losses at first decrease, and later increase. Bangle of relative pitches,

corresponding to a minimum of profile losses, is called ogiptAti (Fig. 8-23,b).

bperiments clearly show that range of optimal pitches depends on the shape of profile.

A change in angle of setting of profile P. evokes change of distribution of

pressures along the profile (Fig. 8-24). In accordance with this the gradients of

pressure in the diffuser and nozsle sections in profile and structure of

boundary layer vary. As a result the profile losses with an increase of P -at first



decrease, and later increase (Fig. 8-24,b), i.e.pthere is definite range of optimal

setting angles. It must be noted that this range depends on the pitch of the

cascade.

The flow angle at exit of cascade increases with an iiicrease of pitch and of setting

angle. In interval value lopt and Py.opt angle at exit with a change of pitch

varies approximately proportionally to arcsin a2 /t.

The slight change in n,,, within a wide range of changes of the pitch and A

is important peculiarity of reactive cascades ce¢,?posed of well-streamlined profilest

The absolute values of ;,,, do not exceed 2-3%.

Apalogously change the profile losses and flow angle at exit depending on

Sand OrI for cascades of active type; however, range of !opt and Ih.optfor

impulse cascades is found to be narrower., since the geometric and aerodynamic

contraction of the channels of such cascades will be less.

We note that presence of diffuser sectors on back edge in nozsle section with

O small pressure gradients does riot result in a sharp increase of the losses, since

with small degrees of turbulence, the transition in boundary layer proceeds more

rapidly and the separation at trailing edges in displaced along the flow.

The Influence of Node Parameters on Profile Losses. In preceding paragraph

it was shown that depending on flow angle at entrance t, distribution of

thicknesses 6W* varies on the concave and convex surfaces, since the distribution

of pressures varies about the profile (Fig. 8-25,,a). The most unfavorable are

modes with small angles at entrance ( pi--7 430), when in entrance sector of back

edge there is t saarked diffuser section. Here the boundary layer sharply thickens

in the contour of back edge, the distribution of speeds in layer deteriorates and

even with moderate gradients in diffuser region in noszle section a separaLion

t Reactive and impulse rotating cascades with small profile losses have Dean

O developed at the Moscow Power Engineering Institute (MEI). The Central Sc.Lntific
Research and Design-Engineering Boiler-Turbine Institute (TsKTI) and the Xrlov
Central Scientific Institute.
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Fig. 8-25. Distribution of pmesures about
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"an flow angle at exit (b) depending upon exit
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develops; sometimes the separation may dev~lop also on entrance section of back

*edge. With P,. larger than the design value the diffuser region is detected on

concave surface. However, in connection with the fact that on descent from this

surface, the flow is of nozzle type, the separation, as a rule, does not extend to

the trailing edge.

An analogous, but more distinct picture is detected in cascades of active

type (Fig. 8-2.6). Consequently, at sma.U angles at entrance there is noted a

significantly sharper increase of losses, than at large angles (see also Fig. 8-15).

A comparison between reactive and impulse cascades at different I P obviously shows

that cascades with a smaller geometric constriction - are more sensitive to a change
a2

in .

At low subsonic speeds, when influence of compressibility can be ignored, the

profile losses depend on the Reynolds number. Influence of Re2 is especially greet

with a separation of flow around the back edge of profile, when the separation

O occurs up to the point of transition of laminar layer into a turbulent. In this

case with an increase in Re2 , the point of separation is displaced along the flow.

Here losses depending upon Re2 number sharply change (Fig. 8-27).

The influence of Re2 on the profile losses must be considered at different

angles at entrance 3, and degrees of turbvlence of incident flow. The geometric

constriction also exerts an influence on the character of the dependence ., (Re 2).

With small degrees of turbulence and design angles at entrance there is

obviously seen the significant influence of Re2 on to, at Re,< (6 to 8) • 10

With an increase in S0 (Fig. 8-27,b) region of practical self-simulation is displaced

towards the smaller Re2 (See. 5-14). A decrease in Reself is noted also cOuring

small Pk di and for cascades with small constriction of the chainels.

Thus, value of the Re2 numbers determining region of self-simulating flow ir cascades

may vary within wide limits depending upon shape of profile, geometric parameters

of the cascade the degree of turbulence and the argle of entrance.9I
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Influence of compre3sibility (number M.) on characteristics of cascades at

suboritical speeds is detectedt beginning approxiamtely from ,M,> 0.5 (Fig. 8-28).

With an increase in M C, • decreases and attains a minirtum value H- 0.75 to 0.95

depending upon type of cascade and shape of profile.

- AA)

Fig. 8-27. A-influence of Re2 number on leases in cascade of reactive
and impulse types, streamlined Rith separation (Curve 1) and with cont in-
uous flow around (Curve 2); Lenigrad Metallurgical MiLl experiments
profile 2339) experiments at TsKTI (profile TH-2); experiments at MEI
profile TC-2A5; 1--influence of degree of turbulence on number Reself

corresponding to beginning of auto-modelling region.
KEY, (a)Impusie; (b) Reactive

The variation of %, depending upon X2 in subcritical region during continuous

flow around is readily explained by the fact that gradients of pressure in a com-

pressible fluid increase with an increment of X2 (Chapter 3).

In a nossle flow around the profile the momentum thicknom , decreases, and

in a diffuser flow around--correspondingly increases (&c. 8-5).

As M inoreaseupthe point of minimum of pressures in nossle section is somewhat

displaced along the flow and value diminishes. As a result the extent ef the

nouse section on back edge increases., For these reasons thd loses@ decrease.
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SFig. 8-28. The influence of H• number on distrib-

ution of pressures, profile L~oses and flow angle at
exit for cascades reactive and impulsetypex

Ir1 &) IMPU1,8; b) Reactive; 0) No. of poirts,

Analogous results are obtained also for ilnpUlse cascades.

section of channel and on edges of profile there appear supersonic region#,, which

are terminated by shock waves. For this reason there appesa, additional wave losses

and C., (profile lose) increases.

The flow, &nee at exit depending upon N varies insignificantly (Fig, S-28,b).

with an increase in ?, angle ýi, decreanes somewhat, and at M2>N2 it izorea~es, this

explaint.,d by the increase of losses iln the local supersonic region.

.,o~ir Cacterijt~iS* of C_._asoada,•. Results of nsasuremente of ý,,p a.id 'ti,

SAnm cascades of different types show that the profile characteristi~cs are €03sosite

functioiis of a large number of parameter.s: 1., =• ij •,e, M4'IY" shape )f profille)

and can be established only exp~erimentall~y.

77~F~j§7 7 7
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Fig. 8-29. Profile characteristics of reactive
(a and b) and iuiPulse cascades (A-OA-lA-2 and
A-3--caoade of ol4 type).

haumples of constructing ouch characteristics for Moscow Powr-Engineering

Institute (MEI) cascades of reactive and impulsetypes may be seen from Fig. 8-29.

An is evident in nig. 8-29,bn the profile losses in reactive cascades &t goo

slightly depend on angle &~ in the interval 12 to 180.



Profile losses in impulse cascades are sMall (3.0 to 7%) and for each cascade

within a wide range of 1, vary insipnficantly (Fig. 8-29,o). The curves C.P==-f(•)

for this group of cascades have a sloping envelope. In Fig. 8-29, also curves

of losses in cascades of old type, formed by arcs of. circles and segments

of straight lines) re presented. It is readily seen that modern cascades,

developed by aerodynamic methods, have by far the best charaoteristics. This result

is corroborated also by graphs of distribution of pressures for comparable shapes

of profiles at identical flow angle at entrance.

8-8. Three-Dmensional Flow of Gas In CasoAe,•.
&n -Loss** a No thods of Decreasing Them

In intervane channels of cascade of finite height, as in a single curvilinear

channel*, secondary flows develop: under the influence of transverse pressure

gradient there occurs an overflowing of gas along flat (or cylindrical) walle3*

0 from the concave surface to the back edge (Fig. 8-30).

On the back edge, at a certain distance from tips of blades, boundary layer,

streaming from the flat walls, merges with the main boundary layer, moving along

trajectories, parallel to the flat walls; as a result here there occurs an intense

buldging of boundary layer and there develop components of the speed, directed to

the core of flow. In the core at tips of blade there develops a flow, directed from

back edge to concave surface, forming together with peripheral flow along end walls.

vortex regions. Thus, along back edge of profile at tips of blade there develop a

paired vortex, consisting of two eddy regions. The vortices have opposite senses

of rotation.

In a photograph of wakes of flow (Fig. 8-31) clearlY evident is the overflow

of boundary Layer on flat walls and on back edge. Since after region of generation of

*An analysis of secondary flows in curs ilinear channels is given in Sec. 5-15.

**Henceforth secondary flown only in a belted cascade are considered.
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FigK, 8-30, Scheme of the formtion of second-
ary flown in intervane channel of cascadle.

Go:Le of flow on flat wall and on back edge,
pripheral flow in boundary layer at tips

of blade.
K•T• (a) Bulges of bound ary layer; (b) Con-
cave surface; (o) Back edge; (d) Pressure curve.

" "-vortices the inflow of gas continues from the and walls, then the vortox motion

increases towards exit section of chanral; region of swelling of boundary laver,
and also the core of the paired vortex are displaced to the middle section. At low

~A

heights eddy region@ extend over the entire section of channel, forming a paired

vortex, characteristic for curvilinear channels of a square section (Sec. 5-15).

I)

Fig. 8-31. Traces of peripheral over-

flow in an intervane channel.



The distribution, presented in Fig. 8-32, of losses and exit angles according to

height of cascade shows the characteristic change of these magnitudes for vortex

regions. With distance from the end walls, the losses at first decrease (Fig. 8-32,a),

then sharply increase and then again decrease towards middle section (losses in

middle section with sufficient height of cascade arm equal to the profile losses).

Maximum losses correspond to region of bulding of boundary layer on back edge.

The minimum value of t along flat walls may be larger or smaller than .,depending on

intensity of the secondary flows; for a reactive cascade the minimum of losses,

as a rule, is not detected (Fig. 8-32,b). In the sons of secondary flows in

I IV
foo- -

Fig. 8-32. Influence of secondary overflows
on distribution of losses and flow angles at
exit. according to height of impulse (a) and
reactive (b) cascades at different heights.

accordance with the change of the exit angle3 at first increase and then, towards

mIddle emotion decrease.

Jc 8;:t.



Wd losses are defined as the difference between total and the profile losses.

An evaluation of influence of height, pitch, setting angle, shape of profile and

channel, and also angle of entrance, Re 2 and M2 numbers can be made on the basis of

experimental data.

Experiments show that, as in case of sinple curvilinear channel, any changes

of geometric and mode parametirs causing an increase of transverse gradients of

pressure in a cascade, the bulging of boundary layer and. the manifestation of

II

diffusersectionsat exit re3 ults i an increase of tip losses.

4' , ,', •r/. .o

Fig. 8,,-33. Variation of end losses depending upon
height, flow angles at entrance, setting angles and
pitch in impulse (Curve 1) and reactive (Curves 2)
cascades.

With a decrease in height of cascade down to known limits the two-dimensional

section of flow in middle sections of channel contracts; theregion of increased

losses in the zone of vortices practiaLIy remains constant. Consequently, coeffcients
I b thaeranina hgt

of end losses linearly vary depending on With a certain minimum height

there occurs closing of secondary flows; the region ot greater losses occupies all the

middle section of the channel (Fig. 8-32a).

Character of dependence of end losses on 1 greatly varies for cascades of
different types. The slope of the lines .=decreases with decrease of/differesenwthdereseo

angle of deflection of flow in cascade 1,---0- j1,4. i,) (Fig. 8-33). The minimum,

values of & correspond to reactive cascades, which are characterized by a

'



great cont.Lriction of the charnels and small angle of the flow's deflection.

WOth an increase in pitch of reactive cascade, the end losses at first de-

crease, because the constriction of the flow increases; they attain a minimum, and

then increa'se in connection with the increment in transverse pressure gradient. An

increase In the setting angle of profile with an o~ptimal pitch results in a lowr-

ing of end losses, because the angle of deflection of flow and transverse gradient

of pressures decrease, and with small pitch with an increase of •, the end

losses increase. The influence of the pitch is especially great for implseecascades,

where minimal end losses correspond to a pitch, with which the intervene channels

at first expand (at entrance), and then contract.

The great influence of flow angle at entrance fl on ', (Fig. 8-33) is explained

by the change of transverse pressure gradients in channel, the occurrence of diffuser

sectors at entrance and in nozzle section and in certain cases by formation of a

separation. End losses markedly increase with a decrease of p, (increase of -Noj ).

With a constant value of 0,,ut increases with a decrease in exit angle P (at

small N< U1 to 120), because here the curvature of the channel (Fig. 8-33) increases.

SThe variation of end losses depending upon the Reynolds number can be evaluated

by curves in Fig. 8-34. With an increase of Re2 the end losses decrease. The
25

influence of the Re 2 number on ý is great if Re < 5 10 . This is explained
2 Vh 2

by th' fact that with an increase of Re 2 the boundary layer becomes thinner.

Influence of compressibility at subcritical speeds is reflected in the decrease

of end losses with an increase of N number (Fig. 8-34) in connection with the fact

that transverse pressure gradients in the channel decrease (See. 5-15) (See

also Fig. 8-69).

The structure of a three-dimensional flow in circular (cylindrical) stationary

cascates possesses certain peculiarities. Most important we assume, isthe presonce

of a radial gradient of pressure; pressure along the periphery is higher thin along

the root section.* An a consequence radial overflows develops along the blies

s II. 9-3 and 9-4.



directed from the periphery to root section. These radial overflow's are superposod

onto the transverse overflows (Fig. 8-35). In addition in a circular (cylindrical)

cascade the shape of the channel varies according to the height (owing to the change

in pitch and cylindricity of end walls) and therefore the intensity of peripheral
0,08 jt h)D_ _ f,, /U •u ~itt,,oIJ •o,• :

Fig. 8-34. Influence of Reu2 and M2 numbers
on end losses in cascade.
ERY: (a) Experimen.s with littlo nonuni-
formity; (b) Experiments with great nonun-
iformity (VTI).

overflows for end walls is different. As a rule, energy losses near the root

section, where radial overflows coincide with transverse, in a circular cascade are

higher than on the periphery. The marked influence of fan-like behavior depends on

parameter d~l. with the decrease of which the difference in speeds and pressures

in root and peripheral sections increases.

Of great practical interest is the development of methods of decreasing end

lonses. A lowering of 'A may be assured by increasing the relative height

of bladepwhich with a given absolute height in attained by decreasing the chord

(width) of profile. However, in connection with the fact that wit-h a chaorge in the

chord not only the tip,but also,the profile losses vary) there arises a problem

of establishmnt of an optimal chord of a cascade.

A decrease in the end losses may be attained also by a corresponding selection

of geometric parameters of cascade and shape of profile (of intervane channel).

Results of investigation of flow in curvilinear channels show that minimum

Intensity of secondary flows in channels of impulse type is ascertained in those
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Fig. &-V. Structure of secondary flows in a
circular (cylindrical) cascade.
Key: (a) Periphery; (b) Root section.

cases, when entry portion of channel is made as a diffuser. Analogous data have

been obtained also for cascades of impulsetype,*

In Fig. 8-36 results of investigation of two cascades having identical relative

heighto l and gb,, and also shape of back edge, are presented. The concave surfaces

of profiles being compared differ in radius of curvature : the TP-1A cascade

has a smoothly contracting and the TP-lA cascade, diffuser-nozzle channels. The

distribution of losses by height for different modes shows that in the TP-lA cascade,

the level of losses is much lower. Total losses in the cascades being compared,

depending on the angle of entrance O and M2 numrber vary analogously (Figs. 8-36,a

and 8-36,b). Especially important are the advantages of TP-IA cascade with low

speeds and small angles of entrance.

,Efficiency of diffuser nozzle cascades and the optimal geometric ratios

e. .•and others) depends on angle of deflection of flow in cascade and the relative

height 1 (Fig. 8-37). With an increase in angle of deflection of flow and a decrease

in relative height of cascade the optimal ratio it 1' at first increases, and latera'

decreases. Results of experiments show that cascades with diffuser-nozule channels

*Diffuser-nozzle channels of impulsocascades for the first time were p.-oposed
by ALL-Union "Order of the Red Banner o La or" Scientific. Research Inst! ',ute of
Rea.- igineering im. F. E. Dzerzhinskiy (VTIr.

4,85
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oFig 8a-ca6e bInfluence ofsae ofuhabel on losses i

according to height of cascade.
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Fig. 8-37. Optimal values of % depending

upon relative height 1.

am expedient to use at , .2 to 1.8 depending upon angle of defleotion of

flow; at large NpI wa 4ý4 limiting value , increases

J ,,1~ ~ ~4, 4 0, O 1t U-S 'e

I A

•,t•' 0o - -- V -_ • ..... -.. - i- -

Fig. 6-38. Influenoo of meriodional cascades on losses in guide eascadesu
&--forns of upper band of investigated and distribution of losses by height
for differont forma of the upper contours and heighta; b--influence of V.
number on Loe in cascades with a different shape of upper contour; o-11-0fluenca of relative height on losses in cascades with two variants of bard.
11,i.ures on curves indicate the variant of contour. Profile TC-2A; M2 .O.0'7;

0.724; Py 340.
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In reactive (nozzle) cascades an appreciable decrease of end losses can be

attained by profiling the channels by height (profiling in the meridional plane).

This method is especially important for circular (cylindrical) cascades in whost

root section usually there are detected higher losses.

In Fig. 8-3,a there are shown schematic diagrams of variants of guide cascades

with different shapes of upper band, and in Fig. 8-38,b and a-corresponding results

of tests of a rectilinear cascade under static conditions. Here there is presented

the curve of losses in a circular (cylindrical) cascade with cy -ndrical bands of

the .sme height.

Ixperiments show significant decrease of losses in cascaue with profiled upper

band. Bosential also is the redistribution of losses by height of cascade: for

the lower band the losses sharply decrease.

The profiling of upper band makes it possible also to decrease difference between

reactions in root and peripheral sections thiLt is, to increase the efficiency of the

turbine stage.

Curves in Fig. 8-39 make it possible to explain advantage of cascades with a

profiled band: in such cascades there is assured a greater nossle flow on back

edge in nossle section and the point of minimum pressure is displaced towards trailing

edge; besidesD speed of flow before main deflection of flow in channel decreases

and results in a lowering of transverse gradient in the sector of maximum curvature

and, consequently9 of the intensity of secondary flows. By being given a rational

distribution of pressure along the channel, there may be found optimal shape of

band.

The losses presented in Fig. 8-38,0 depending on 1 show that described method

of profiling is especially effective at small relative heights.

It met be noted that an asymmetric compression of the upper contour of cascade

expands range of optimum pitches and setting angles.

The optimum magnitude of the compression, determined by the ratio .h.",

LMI



varies depending upon height of cascade (Fig. 8-39,b).

It in necesary to emphauito, that the indicated methods of diminishing tip

losses in impulse (diffuser-noszle channels) and reactive (asnyumetric compression)

cascades are physically identical. In both cases there are attained a decrease in

speeds at turn of flow in channel and greater constriction at exit of cascade.

A

801H/ MT1fip

- -

A ~'"' 557*911 1 13VI'1 111

Fig. C-39. A -the influence or a meridional profiling

of cascades on distribution of pressures about theprofile; -- decrease of, losses dependLng upon 1, and

on the degree of compression i,-11/i.
Kl'r a) Back edge of profile;• " b) Concave
surface of profile.

Conditions at entrance into cascade and, in particulars the irregularity of

field of speeds by height and the high turbulence of the flow exerts a grest influence

on the and losses. The increase In irregularity according to the data VTI cause an
IncreFse in thi .end losses (Fig. 8-- ). An ncre ase m the initial tunbug xice
results insa dcrease of the slope andlb of the straight lines but

total losses in a reactive dscade increase. Physically this result is eXLained by
on the nc lhst wieh an increase in the irregularity and turbulence the thioc}aess ofaninceae i te nd oses Fi. -)4..An nceae i te iitalturua ~m

reul.inaderas f hesop ngoofte trihtlne I(! u

mm I"tota lossesm in a rectv cacm nces.Phscly srsuti xpandbO t'~ acttht wth n icrasein he rrgulrit an trbuenc th tio iem-o



boundary layer on the end walls and the nos5 of gas participating in peripheral

motion increae.

8-9. foq.edure for Calculating Und Loss eslnCascades

The strict solution of problem on end losses in cascades should be based on

equation of three-dimensional motion of a viscous compressible fluid. In

connection with evident difficulties of such a solution it is possible to use

another method; on the basis of theory of dimensionality constructp proceeding

from considerations about physical nature of secondary flowo, a structural formula

and introduce experimental correctives [ L.5.

In the general case the end losses of energy can be presented as the sum:

hE ~Aa+ 3EI + AES,

where AE, is that part of end lo*sesj cs.%sd by the interaction of the boundary

layers and by the peripheral motion; S
IA, represents frictional losses along end walls of chanmol;

F,. additional vortex losses, inclating losses from compensating motion,

at the tiUs.

It is readily seen that the vortex loeses Ar, and %ri', depend on circulation

of speed r, and &r,, does not depend on r.

An analysis of "xperimental data shows that magnitude of %[,', nay be expressed

by the following functional dependencei

We now write out (8-38) in dimmnsionless form:

y expanding expression (8-39) into a series in parxinsters of -f J- and

sin , there can be obtained the function (8-39) in explicit form. By considering

that function (8-39) is even with respect to arguments of 1 and sin •, and at

49~,n



F 0 is independent of p, -obtain:

If It is assumed that the coefficients ., and .o with a change of N and Re

numbers vary proportionally, i.e., *1 +0 B. where B is a certain ex;prmental

constanLt, then there in readi~y obtained an expression tor the coefficient ,.

With a sero circulation (-o aE'

The magnitude AP&, may be expressed by 'the energy thicknee, a according

to the equation

hi,. ,. sin"l '

then

For determining the coefficient of the end lossea 4h we shall determnined the

kinetic energy of flow after a cascade%

Here a-I ed In the actual flow rate through channel of cascade; F is

the effective area of channel, which in readily determined, if one wera to use the

displeacement thickness: F -- 2/I•0 - ia;1n -

where w%, a, 4ar e the thicknesses of displacement on end wall, on

back edge and on concave surface of profile.

Cons.quently,, I.t - 24*o.p-- i•+a: + ]

14,14 [I-2d'. -- ] (d,)

whore a:. + a* . b",.

The vagnitudo of Fsin;, we present as:

O •"n •1 ±-" '!~- sin •, +"- 5ý-Ootp,+0oo0)sin n¢-

4 98



where
%2 Pa (8-4,4)

For incompressible fluid during a turbulent condition of flow in boundary layer

on a fairly adequate basis it may be assm.ed:

0.13

ke II -, M7 1" ;. - . 1,;
+a I . 0,03+

Re82 ( I crr .

Hr means of formulas, (8-40) to (8-wi) and by ignoring the maniltude 0.1'

T , eicompressibiley IsdpnecondmninessedM2spretdin F uig.d840

( ..-I ) in, comparison with the term Re2  ,i obtain for an icupesbefud

0.13 r + , (, " '' - •] 8 •

In a dermnian tase for a compressible fluid the coefficient of end losses is

determined by t te formula
Re•,t +B" [ (' + ~'•;fJ 1' coa (8-6)

Here k1 is a correction factor, which takes into consideration influence of

ccup~reuuibility. Its dependence on dimensionless s peed If ii presented in Fig. 8-40.

For' determining the numberical values of coefficients of A and B in Fig. 8-41

there have been plotted experimental data on the end losses, obtained both for impulse,

and also for reactive cascades with different pitches, heights, flow entrance and

exit angles.

Hereas the argument, there has been adopted the complsx

and along axis of ordinates is plotted the function . In the adopted

system of coordinates formula (8-46) is expressed by a straight line, cutting off

along axis of ordinates a sector, equal to A, sloping to axis of abscissas at an

anle 8 - arcten AB.

results of the indicated processing* of the experimental data make it possible

*The prncedure discussed was worked out in collaboration with A. Ye. Zaryarlin.

I I .. . . ... . .. . ... V%. .. ...
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F±i. 6-10& . Deepndo•eo of correotion
fator on dimensionless speed,,

to conclude that the coefficients A and B depend conmiderably on the mode of flow

In boundary layer and type of cascade. For reactive casuade with flat end walls

'to'
c i~ .. ..-d N? -

Fig. 8-41. Coaparison of /esign and experimental
values of end losses for reactive (rectilinear 1,
2 and 3) andimpulse (rectilinear 4, 5 and 6) caacadcs.
KEY: (a) LMZ-Leningrad Metallurgical Mill Profiles,
Nb)I 9 I-Moscow Power-Engineering Institute Profiles.

a l'(T-Central Boiler-Turbine Insitute Profiles.

the experimental points are fairly wvl1 grouped depending upon mode of flow in

boundary layer near the straight lines I and 2. For reactive cascades with &symumtrio

compression the slope of the line varies (straight line 3).

Straight lines 4 and 5 characterize impulse casoades with smoothly contracting

channels and straight line 6-with diffuser-nosmle channols.

Values of the coefficients, obtained on the basis of processing of exs.riwntal

data, are presented in Table 8-1.

It is interesting to note that forimpulse and reactive oascades, it there is

* a diffuser sector at the entrance into cascade, coefficient A - 0.13; this u,)rresponds

to turbulent mode of flow in the boundary layer. In the transition from or o



mode of flow to another there occurs parallel displacement of the straight l1ne,

comsesponding to a given type of cascade. The influence of tho shape of intervane

channels is characterized by a coefficient, Whose value varies very differently

for various typeM of cascades.

Formula (S.-46) makes it possible to establish the influence of certain geometric

and mode parameters on the end losses. The coefficient ;h varies inversely pro-

portional to the relative height 1. With an increase in pitch T# the coefficient C,

at first decreases, and then increases. A decrease in angle at exit & and increase

In angle of turn of flow in cascade reduces an increase in ;k. With an, increase in

the Re and M numbers the end losses diminish. These results agree very Well2 2
with the experimental data*, -presented in Sec. 8-8.

Table 8-1.

(O& r AK~ ume pewe-.,,! CM3 Al~t( ,301- PUeKrismme penierKci (jej n!o-jf- -

more .4 aCKa 'W, BXOAQ T;IM no0 BUCMI:

- d) .. e - . r
(c).AsNmIapiiA no- T)'P5vac.1gai.!l ,i,- A .i•.2 iunp.nwi, ,i,'. T pm.lrIIIr p .a m i|tin c .a o r p an it, !im u l c a o )i1 rp a til|.,i~ u r | C .10 41 , p: ,, u .,

.A IA A a i it

0,5 55 0,13 1,90 0.415 2,C' n' 1:1 0.7

""eIIVMQ TK~l C .A:Il}.i30plI0(h) PeIKTIlI|IfC INVI~ tKII 'KT IlG)I opIMi C I I KaHfLiT.1 C .ItCTpIýIIIIuI gi•NI 11m1,1 ,C Ktile %.W(U
cpe '11*

- - 0.13 1.0 - j - 0.1:1 0,31

KEY: a)Impulse cascade without diffuser section at entrance;
b) Reactive cascade without contraction by height; c) Laminar
boundary layer; d) Turbulent boundary layer; e) Laminar
boundarylayer; f) Turbulent boundary layer; g) Irnpulsqe cascade
with diffuser noule channels; h) Reactive cascades with
asymmetric contractions in nouzle section.

*Formula (8-46) does not take into consideration the influence of the non-
uniformity and high turbulence of the flow. Appropriate correctives can be introduced
after the accumulation of the necessary experimental data.
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8-10. Structure of Flow and Losses in Reactive Cascades
it Transonic and-Supersonic Seeds

In reactive cascades speeds at the entrance are subsonic; transition to

supersonic speeds occurs in the intervatie channels. Depending on the position.

of minimum (transitional) section in channel reactive cascades are divided into

two types: with contracting and expanding intervane channels.

a) Cascades with contracting channe1s. In such cascades the transition to

supersonic speeds occurs in the nozzle section,

In marW cases, the transition to the transonic region is accompanied by

significant change in the characteristics of the cascades. In this connection it

is necessary to know critical M2 number, with which in cascade there appear local

regions of supersonic speeds.

In Fig. 8-42,a there are given curves of maximum speeds on back edge of

profile of guide cascade depending upon M2 and relative pitp!.. Beyond the line

* N -1 there will form enclosed regions of oupersoni~c speed*. Local supersonic speeds

may also gener~wte in region of flow, adjoining trailing edge.

1 ®r,' I *I

Fig. 8-42. Local maximum speeds on back edge of profile
depending upon K (A); critical values X1, depending upon
the pitch for reactive cascade (E).
KEY: (a) Ki ; (b) on trailing edge; (c) on back edge;
(d) region olupersonic speed. on back edge; (a) region
of supersonic speeds along edge.

k95



The critical X,2 numbers depending upon the pitch for reactive cascades are

presented in Fig. 8-42,b. It follows from this that for cascades there exits a

pitch Z* at which, sonic speeds are attained simultaneousl•y for the back edge and

in region of edge. This pitch corresponds to the maximum value of the 12 number.

2, values for a grid, thu character of the change of H I(M, 2) and also

the location and extent of supersonic region depend on the shape of profile (curva-

ture of exit sector of back edge, thickness and shape of trailing edge). With .m

increase of 2>M, the supersonic region increases and its boundary is displaced

inside the channel.

With a N m 1 number the line of transition approximately coincides with

narrow section of channel* and the supersonic region or back edge of profile is

connected with region of supersonic speeds after the trailing edge.

The most characteristic peculiarity of flow around of cascades by a flow of

AE 079
I L

"-gb *Z ',i t

"VV

Fig. 8-43. Distribution of stagnation pressureb
according to pitch in reactive cascade at dif-
ferent )(2.

*With a greater curvature of back edge this line is displacted in the channel.

eN W~I.o-- -
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transonic speeds is the increment, of pressure gradients in the nozzle and diffuser

regions and the displacement of poinets Po along the flow.

In Fig. 8-43 the presented graphs of the distribution of stagnation pressures

according to the pitch cfguide cascades, makes it possible to conclude that with

an increase in H2 the rnonunilormity of the flow increases: the depth of the edge

wakes increases in the transition to transonic speeds, the edge wake expands.

*JI I .
o ! I _ _ _ - - o

A)

rC-20

-25 C-2" 7 -24

I I
B)

1- L' . .... ...
'•

Fig. a-44. Influence of K. number on profile losses in a
reacti-ve cascade.
A-w¶th a change of relative pitch t; B--with a change
in shape of back edge of profile in nozzle section; C--
with a change in thickneso and shape of trailing edge.

MiY: (a, chord; (b) TS-2C; (c) TS-2B; (d) TS-2A3  (6)

TS-2R.
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An analysis of curves or profile losses, presented in Fig. 8-44, shows that
character of chanpe in ;,1, depending on 14 is determined by shapb of profilew

(mainlyj, curvature of back edge in nozzle section,, the shape and thickness of edge

and the geometric parameters of cascade. Here there must be distinguished two mairn

zones of change: the subcritical (HM,<V) and the supercritical (M > ). In

the subcritical region with an increase of 42 the coefficient of lo;zes for a

majority of cascades is somewhat diminished. With a separation of flow around back

edge of profile an increase in M2 usually reduces to an increase in 4,,,,

With a decrease in the pitch the intensity of the increase; !Pin tranqonic zone

decreases, and the 2 value, after which there occurs an increase of loses, becomes

iuxrger.

The influence of the Reynold's number, detected in experiments by N. A. Sknarl

should be considered important because with its increase the rate of increase of

l,, in the transonic zone diminishes. These data pertain to a low degree of

turbulence of the flow*. With an artificial turbuliuation of the flow also there is

observed decrease in degree of increase in losses (M2> 42*. )

The influence of the shape of back edge in nozzle section on losses in cascade

is shown in Fig. 8-44,b. Lo•ses in the TS-2A cascade greatly increase at 12> 0.85,

this is caused by the freat curvature of back edge. For the TC-2B cascades, whose

profiles have in the nosale section a smaller curvature, the increase in losses is

observed only at M2 >1.05 to 1.10. The realization of a profile back edge concave

in nossle section makes it possible to displace the region of critical losses to a

zone of stinll rger 14 numbere.
2

In the study of the influence of compressibility on charaoteristios of cascades

*The influence of degree of turbulence on characteristics of reactive cascades
during transonic speeds explains the nonconformity of the curves Cp -t(M,).
ottained in various tubes, having a different turbulence. With low turbulence the
transition through the speed of sound is accompanied by a sharp increase of
profile losses, since shocks in local supersonic zone on the back edge results in a
separation of the iaminar boundary layer. With high turbulence boundary, layer in
supersonic zone is turbulent and a separation, as a rule, doe3 not generate or it
is displaced along the flow.

I I I I I. I .



the thickness and shape of trailing edge must be taken into consideration. In

Fig. 8-44lc the results of experiments shown confirm influence of these parameters

on the function 1,,b(M").

With supercritical pressure differentials in the cascade in the zone of narrow

section intervane channelethere in established a critical speed. After the trailing

edge the pressure is lower than the critical; therefore in a flow around edge (point

At Fig. 8-45) pressure fall--in noszle section of channel wave of rarefaction

ABC extends. It must be emphasised that intensity of wave ABC in determined by the

pressure in wake of edge and not the pressure at infinity %fter th, sascade. In

primary waves and waves of rarefaction reflected from the back edge of profile the

flow roexpands: static pressure on back edge of profile after wave ABC will be

lower, than at infinity after the cascade.

A subsequent development of spectrum depends on the structure of flow after

trailing edge and degree of reexpansion of flow in the wave ABC. The boundary

0streams of gas, converging from the concave and convex surfaces of the profile

approach each other and at a certain distance after edge turn sharply. On the

boundaries of initial sector of edge wake there develops a system of shocks and

compression waves, which merge to the diagonal shocks FC and FH.

The reexpansion of the flow in the primary and reflected waves of rarefaction

partially "is corrected" by the primary shock FC. The shock, interacting with

boundary layer on back edge of profile in noszle section, is reflected and again

occurs in wake of edge. Depending upon mean value of the M number in this section

in wake of edge the reflected shock PC either intersects the wake of edge (Nkp> 1)t

or is reflected from its boundary. Thus, flow, moving in nossle section, successively

passes through primary and reflected waves of rarefaction, the primary and reflected

*Surface of transition approximately coincides with narrow section of channel.
* Actually owing to the nonuniformity of the flow in channel and influence of viscosity

the surrace of transition has certain curvature and is displaced against ties flow.
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ahocka*.

The behavior of the limitinS lines of flow diring descent from edge (from side

of back edge of profile) eseentially depends on the ratio of the presaw'e3 at point

D and after trailing edge. If the presese at point D is higher, than afLer the edge,

A•

'C)°

,N .' 0 N'

Fig. 6-45. Schematic d.Lagram of outf low o~f gas
from a guide cacade at supersonic speeds.

*Intensity of primary and reflected shocks is variable along the fronts since
they are propagated in a nonuniform flow and they interact with the waves of rarr,-
faction.
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* then at the point D there will form a waYS of rarefaction and the flow around the

edge improves. The line of flow descends from profile not at point D, but at the

point 1. The wave of rarfaotion DLKD is encloend by system of wak compression

waves merging into curvilinear shook PH. The system of shocks 7O and FH will form

the tail shook wave of the profile,

If pressure near the point D is lowr than pressure after edge, then a shook

will form at point D. In this case the woke of edge is found to be mare broken

up. In certain oases the shook in located higher along the flow with respect to

the point D.

The re-expansion of flow in waves of rarefactions intensity of edge shocks 7a

and 71, and also their location are determined by ourvature of back edge of profile

in noimle section and by the thickness and shaps of trailing edge. Thus, with a

decrease in curvature of back edge, the re-expansion of the flow decreases and,

* consequently, the intensity of the shooks lomrs. y specifying for the back edge

of profile in nousnl section an inverse ourvatureit is possible to reduce the re-

expansion of the flow to a minimam the edge shocks in this case will be weakened.

In the intersection of system of waves of rarefaction and diagonal shocks

individual lines of flow repeatedly and variously a*r deformed, in which at ir

the average flow angle at exit increases in comparison with the subsonic mode: flow

is deflected in the nouale section.

With an increase of differential in pressures the spectrum of the flow in nosulo

section of channel and after cascade ohangesl the intensity and character of locatioy

of waves of rarefaction and compression waves vary. The extent and int newity of

primary wave of rarefaction increase. Angles of primary, reflected and edge shocks

decrease, and point of fall of diagonal shook 10 onto back edge of profile (point C)

is displaced along the flow. In acoordanoce with this also the character

of deformation of individual lines of flow varies. However, the intensity of the

shocks increases only to a certain value of the X2 number, depending on goeometric
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0
Oaramaters of oadide.

The expansioht of flow in nozsle section of aasade terminates with the

relation of pressuresui t,,. Accurate detertination of value ", in difficult,

Pig. 8-46. Spectra of flow of air through
reactive oaoade with contracting channels
transonic and supersonic speeds. Relative
step t - 0.543; exit angle of profile 1505i21;
a-- ,- 0.528; b- aZ 0.450; c-- o2
o.37o6 d-- 12 °64, ,

howover it is possible to consider lin•iting such a mode, during which a primary

shook occurs at point D (Pig. 8-54pa). In this case instead of three shook$ only

two will form: the refleoted shock CP merges, with the edge shook PH.

, ,,,,



If 92<e,, then the expansion of the flow partially occurs beyond the limits

of the cascade (Fig. 8-435,d). System of shocks on the trailing edge remains basically

as previously but the structure of the wuke of edge varies. the left braiich of the

edge shouk FC occurs in subsonic part of wake of edge and sharp17 deforms it. The

pressure after the udge in this case is determined by the shock, and consequent2j,

also the counterpressure, With a significant decrease of E2<v, j the primary

shook occurs in supersonic part of wake of edge (Msig. 8-45,b). Hore the flow around

trailing edge of profile and the edge prossure are dotermined only by geometric

parameters qf the cascade and do not depend on counterpressures This value of va

corresponds to a secondary limiting mode of flow in cascade.

The considered schematie diagrma of

S- outflow from reactive cascade are corroborated

-- by visual observations by means of an

optical instrimeint (Fig. 8-46).

0In F i 8-47 there is given the dis-

tribution of pressures in sector of back

-i iwt edge of profile in nouzle siction of cascade

during different ratios 82 -P/P.0 After

ax -- - - -the narrow section (Points 2-6) it is

-~ Amu . pussible to note significant re-expansion

of the flow, which is terminated by a sharp

increase of pressure caused by interaction

of primary and reflected shocks wJth the

boundary layer. After the shocks the pres-

--- sre along back edge falls, With decrease
Number of points

Fig. 8-47. Distribution of of r , the %one of maximum rarefaction is
pressures along back edge of
profiles in noszle section of displAced along the flow towards trailing
reactive cascade with contractirg
channels during a supercritical edge. In a m(4td of limiting expansion
outflow.
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Fig. 8-48. Distribution of pressures about
profile in cascades with expanding intervane
channels.
MYX: (a) Number of points.

(rIw 0.205) the pressure along back edge of profile continuously falls.

b) &eactive ,eas -wdes .hMandinx intervene chamois. We shall consider

results of an experimental investigation of such cascades. In Fig. 8-48 the dis-

tribution of pressures about profile for four cascades is shown. Hence it is evident

that =der certain modes of flow in the intervaen channels &a in a single laval

nouule, shock waves (diffuser section) appear, where their position and intensity

depend on the mode Ps and geometric parameter 2- - (Fig. 8-53). As e.I . a min

decreases the shocks are displaced towards exit of channel, Under design conditions,

determined by the ratio j, only edge shocks will form.

The character of the change of flow spectra in intervane channels of cascade

*an be traced by the photographs in Fig. 8-49.

Curves of the loss coefficienLs (Fig. 8-50) show that the flow in cascade

with expanding channels is accompanied by a sharp increame of losses during deflect-

ions of flow mode from the designed mode. The variation of the coefficient of

losses is found to be greater more eignificant, the larger is the geometric

parameter J, i.9e3the greater is the design value of M2p (See Chapter 6).
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Fig. 8-49. Speo tra of flow in cascades Fig. 8-50. Characteristics of cascades
with expanding nhanne Ii. with expanding channels.
a- z,-0.4; b.- ta0.3; # z- 0.2. a--variation of qe,,, depending on s, and

1; b--driendence of flow angle at exit
on .~and i

The maxiwvn, variation of louses occurs with an increase of e2 from~ the design

value up to 0.5-0.6. With larger ei the shocks are located near the minimum section;

the intensity of the shocks decreases, and 1g, iwrs.

Under the design conditions fu'V the looses increase, since there occurs an

expansion of the flow in nouule section of the cascade. Under flow conditions close

to the designingo the losses for allcascades are small, wher'upon profili rg of the,

expanding part by method of characteristics makes it poenuible only insigriif!.cantly

to lower the losses uinder such flow conditions.

In Fig. 8-50,,a, there is presented a curve of wave loss aoefficisit. I for a



cascade with .L6, constructed according to the curves of pressure distribution

(Fig. 8-48) on the assumption that the shocks are normal. Hence, it is evident

that the wave losses are small; the chief losses under rnondesign conditions are

caused by a separation of the flow, In Fig. 8-50,a theifo is plotted also a curve

of Wp for a cascade with contracting channels. Intersection points of the curve

;up for this cascade with curves for cascades with expanding channels makes it

possible to establish regions of the rational use of the cascades being compared.

!he variation of the central angle of flow after cascade depending upon •

is shown in Fig. 8-50,b. Fr.r iascades with 1>1 the central flow angle slightly

varieb over entire range of variations mf' ez, For a cascade with 1 - 1.0 character-

is ieA is the increase of P2 at supersonic speeds, caused by a deflection of the

flow, in the noszle section.

B-11. Calculation-of Angle of Deflection of Flow in Nozzle Section
and the Profiling of Reactive Cascades at Transonic and

Sulersonio Speeds*.

There are several methods of calculating angle of deflection of flow in a

nosile section of cascade. The most widely used and simplest are methods, based on

equations of a one-dimensional flow.

In assuming the,, field of flow in sections AA (Fig. 8-51) and EF (selected at

a great distance after cascade) even, it is possible to write out the equation of

continuity in the following form:

pc. sin p,-- ,. sin ?,., where sin -- 1

We divide both sides of this expression by p., a.; then we obtain:

q, sin •,=q.. sin ,.

In taking into consideration that at c, ,, q,-a. 11 and , where

a is the angle of deflection of flow in noszle section, we arrive at Baire's

formula: a=rsnJ i ,)~(-7

*Paragraphs 8-11 to 8-14 ,te;-e written by A. V. Oubarev.
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Fig. 8-51* A--chart tor determining angle
of deflection of flow in nosule section of
cascade; B-designed relationship between
flow angle at exit of cascade on the speed

4 and ýn .
1ET: (a) Limiting values

With a consideration of losses betwrln sections AA and EF Baire's formula

acquires t he form: aarcsin hl'2Sn. -?.
ba* .(8-48)

It follows from this that with an increase in losses, the angle of deflection

increases. Essential also is the fact that the angle of deflection 8 depends not

only on the rate of outflow and losses, but also on the design exit angle ,

(Fig. 8-51,b).

Bairs Ia formula is valid only at 1, " a,, i.e.)as long as primary ware of

rarefaction is within limits of the nouzle section. The angle of deflection, corre-

sponding to siaximum expansion in nozzle section,is determined approximate%, by the

relationship 4 a= X,. -- ;0,

where dt, -- angle of characteristic, coinciding with exit section.

Hence, by mcans of (8-47) we obtain the obvious equality

in ( + " ) == sin 5m - n (1,49)
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In expr•,&,i;ing q in terms of e,, e find the ratio of pressures for the mode

under consideration: , . ]
Is .(sinP.

From equation (S-49) there readily is determined the critical angle of

deflection s.

By means of equations of continuity, momentum and energy, there can be obtained

an accurate solution for angle of deflection of flow in nosule section of cascade

with edges of finite thickness.

By assuming that in sections AA and &F (Fig. 8-51,a) the flow is uniform, we

use the equaLions of conservation presented in Sec. 8-6. By solving these equations

couonly there can be obtained the computing formula proposed by A. S. Natalevich:

raw a-Z-

k--
-'k-+I- Xe~ ii- iv.(-0

k+I-Np. "

At S< 10 it is expedient to use the approximate expression

r h(k + IW 'k-I (k (8I--si)
TS- - - ,

Here and above it is designated: - g=-
4 ; " ,,, N-

is the pressure after the edge.

For the case of an infinitely thin edge formulas (8-50) and (8-51) were for

the first time given by C. Yu. Stepanov.

The solution of system of three equations provides the possibility also to

determine wave losses in nozzle section. For the case of infinitely thin edges the

wave losses are determined by G. Yu. Stepanov's formula:

P)--- itU j-1

h-I'



It must be noted that the coefficient of wave losses considers inly losses,

associated with turn of flow in nozzle section.

Losses, caused by the interaction of shock waves with boundary layer,

frictional losses and losses for equalizing the flow usually greatly exceed the

wave losses, calculated for an ideal fluid. Therefore the angle of deflection both

by formula (8-47), and also by G. Yu. Stepanov's and A. S. Natalevich's formulas are

found to be less than real. Baire's formula with a consideration of losses in nozzle

section (8-48) gives close agreement with an experiment, but its use is limited,

because it is necessary as a preliminar7 to determine the losses.

In Sec. 8-10 it was shown that flow angle at exit from cascade with expanding

zhannels remains virtually constant in wide range of modes ,%1,M 2• 1•.. By using

such character of dependence P(01:1), it is possible by calculaing to determine

lc-aes in a cascade under various flow conditions,

We write ou ' the equation of continuity for the critical section Fa *..... and

S section at infinity after the cascade in the form:

where Pc, are the actual parameters of the flow.

We shall divide and then multiply right side by p~gC2, and after transformations

we obtain: •-- P. P21 Fp
tmi. --5"n p r * (2)

After solving this equation with respect to Y, we find:

where

Sign minus in equation (8-54) has not physical meaning, since 9>0.

In the case, when const, sll 19,a., and

0I I(8-55a)
II
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In Fig. 8-52 there are presented the computed curves showing the relationship

between I and a, and the parameter I - a'L at 13. - const The proposed procedure

provides the possibility with sufficient accuracy to determine the additional ices

Fig. 8-52. Calculating dependence of P on

'a for cascade with. expanded channels (k - 1.4).

under off-design conditions, if the dependence of ?, on i,. is known.

It is readily seen that for decrease of losses in a wide range of modes

,,s• lt is necessary that the exit angle P, i. variable,

Ideal in this sense is the cascade, for which a variation of p, would correspond

to equation (8-54) at ?- 1. Hence, after a number of transormations there may

be obtained the following optimum law for the change of flow angles z

Consequentlya - l(q - 1) the flow angle at exit should be at a

minimum, but at All, > 1!--it increases. However experiments have shown that' for

cascades with expanding channels such character of change of ?, is possible.

For a cascade with contracting channels, auil:=sin n Under thiscondition

we obtain the usual Baire equation for flow angle at exit (8-47).

Thus, for cascades with contracting channels, the law of variation of P,(M,)

coincides with the theoretical.

However, as is well known, in such cascades under off-deaign conditions

(,<'%) the losses intensively increase (Fig. 8-44).

This Is caused by the occurrence of wave losses and interaction of shockm

with boundary layer on back edge in nossle section.

I p-d e•



Am has already been indicated, intansitry of shocks in nozzle *ection at H 2> 1

S depends on curvature of back edge, where the minimum wave losses may be obtained

with the back edge having a reverse concavity in nozzle section.

Investigations, made at the Moscuw Power-AEnginaering Institute have shown the

possibility of creating reactive cascades with small losses at 1j> 1 under design

and off-design conditions. In such cascedes rationally there are combined the positive

features of cascades with expanding and contracting chamnels. At moderate suporsornic

speeds M2 Q 1.3 to 1.4 the intervene channel are made contracting and the back

edge in nozsle section is calculated by method of characteristics in such a way that

along the back edge there does not occur a re-expansion of the flow. Method of

characteristics can be used only for evaluating indicators of the flexure on back

edge. Point of change of curvature on back edge should be located inside the channel.

At high supersonic speeds M2> 1.3 to 1.4, it ij expedient to make the cascade

channels with a small expansion ( f - 1.05 to 1.15), by displacing narrow section

I •within the channel. Here the necessary design concavity of back edge diminishes

T4V~

6)
Pig. 8-53. a--supersonic reactive cascade of Moseow Power-.ngineering Iiasti-
tute (HSI) with concave nozzle section and smAll expansion of intervane ,flian-
n.h.s; b--influence of expansion of channel on characteristics of supersotiLc
cascades with concave back edge in nozzle section (exreriments at ME.). IL-- f-
1-17; T 0.46 (flat back edge in nozzle section); 2-f = 1.17; U = 0.53 ý; 3-f
1. 10 t - 0,581; 4-- f- .0; -0.680 (curves 2,3 arid 4--concave back in ozz Ie
sec5tion.



and contours of the profile are simplified. The expediency of introduction of n

small expansion of channel up to nossle section is based on curves of losses, pro-

sented in- Fig. 8-50: with small values of parameter £ intensity of increase of v.11

under off-design conditions sharply lowers. With a decrease of M2 number the flow

angle at exit in such cascades will vary more intensely, than in cascades with

expanding channels.

In Fig. 8-53 there are pra vnaitod certain results of investigating cascades pro-

filed by the indicated method. A comparison of curves shows that such cascades have

significant advantages not only under variable, but also uider design conditions

in comparison with cascades, having a wide expansion of channel (f>1.2). Experiments

have shown also that for transonic speeds (K 2<•1.2) satisfactory results may be

obtained by means of a rectilinear back edge in nozzle section; here the point of

discontinuity of curvature on back edge is disposed inside the channel.

8-12. truct,. ,of ,Flow -in Imulse Cascades at
Transonic and Supersonic Speeds-

The flow around impulse cascades by a flow with transonic speeds is characterized

by supersonic sones both on back edge in noszle sectionand also on entrance sector

of back edge. Therefore, equally with M2*the critical H2 number, with which sonic

speeds generate in nozsle section, the introduction of the concept of a second

critical number X which determines such a mode of flow around, at which sonic

speeds generate on leading edge is meaningful. Thus, like N2* the magnitude H2**

depends on the spacing and stagger angle. Besides, the second critical number 2

decisively depends on the flow entrance angle.

In Fig. 8-54 are presented the N,*and M values depending on and entrance

flow angle As can be seen,, at sAl 1 and large t H M2,,i.e.jsonic speeds

in an impulse cascade are generated first on leading edges of blades. With an

increase of the spacings, N2 increases. The character of the change 2 and M2N to a

significant degree is determined also by the shape of profile: curvature of back



edge in nozzle section and at entrance sector and in the thickness of edges.

Under conditions ?VM2in entrance sector of back edge of each profile of

cascade there will form an A -shaped shook. With an increase in speed this shook

is developed into a forward shook for the neighboring profile (Fig. 8-55). Directly

after each forward shock the flow is subsonic, howevor such scheme of flow around,

obviously, takes place only in the case, when after each shook flow is accelerated

and before tho subsequent shook the speed is 1%1> I. As the speed of incident flow

increases the forward shocks approach the leading edges and are distorted. Here

the flow after the shock is vortical and along front of cascade the speeds vary in

magnitude and direction.

At a certain value of ,• • • , when axial component of the speed is super-

sonic, shocks, occurring before each profile, merge into a single wave-like shock

(Vig. 9-55,b). The left branches of forward shocks are turned in a direction toward

the concave surface of profile. With a further increase in K1 the shocks enter

into the intervane channel. Consequently, under the conditions M, ; -, neighboring

profiles do not esrt. an influence on the flow before the leading edges and therefore

the flow around entrance sector by such a supersonic flow may be assumed isolated.

However in majority of encountered cases speeds at entrance into cascade are

insufficiently great and axial speed of flow is significantly less than the sonic.

In this case, the influence of profiles is propagated in a direction against the flow.

.We shall consider the flow around by supersonic flow of ideal fluid of a cascade

iLth a finite number of profiles under the condition that axial speed is less than

th6 sonic. Let us assume that thickness of leading edge is equal to mero, the

design angle of edg# is extremely small and back edge of profile up to ent:%ance

sector of channel is formed by a straight line whose slope angle to front i)f cascade

Is equal to Po.

If vector of speed at entrance in cascade is directed at an angle 30 6rom side

of back edge onto leading edge there appears a slight discontinuity--the chwracteristic.
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'Fig. 8-54. Influence of relative pitch
E, the setting angleIyand entrance flow
angle k on critical values of M2* for ar

Along the reotilinear sector of back edge, the speed is maintained constant and,

consequently, before edges of following profiles the speed of the flow in equal to

Fig. 8-55. Scheratic diagram of flow of

supersonic flow in an impulse cascade.

speed before first profile (Fig. 8-56,a). Thus, in this case flow before cascade

with oez infinite number of profiles does not differ from the flow at infinity.

In the case when vector of speed at entrance into cascade in directed at an

angle, smaler than on leading edge of first profile (from side of back edge)

there will form a wave of rarefaction, in which the flow is accelerated and in turned

by an angle &,=,.--P, (Fig. 8-56#b).

Along the reoctilinear sector of back edge of profile the speed is maintained

higher than speed at infinity before the cascade, and its vector is directed at

an angle > il>l,. Therefore on edge of following profile there develope a

cempression wave and all the lower located profiles are flowed around by a flow of



greater speed, than the first.

At P,> on leading edge of first profile there appears shock waves in

which thero occur a decrease in speed and turn of flow by an angle . . -.

Further discussions are analogous to the case, when Pg< ,,,

If at 11-I-g we consider a cascade with an, infinite number of profiles, -then

it is necessary to ad&it that at infinity before the ca,4sde there mum. either exist a

wave of rarfsaction at, ),<% ), in which flow is turned by angle .

or shook wave (at 1, > ) This contradicts the condition 0,1 . Consequently,

at a supersonic speed before cascade flow at infinity can be directed only at an

,dLA

Fig. 8-56* Structure supersonic flow
at entrance into ijapu]s.e ,(aecade.

Under actual conditions a rotating cascade is flowed around conourrently with

the guide cascade. In this case the entire change in structure of flow on leading

edges of first profile are localized in nozzle sechor of guidchannel, whre in a

such eystem it is possible to assure a flow around cascade by a supersonit flow at

any entrance angle p,-/•,(up to the arrival of modes of 'cutoff", Sea 8-13 1. Here

* the flow around lower located profiles to a significant degree is determircd by

thei iit.. of shocks and waves of rarefaction, reflected from wall of oblique section

|•515'



of nossle. Structure of flow before cascade is complicated, and he' monotonous

flow around all profiles is distrubed. The ;eriodicity of the flow at entrance

!ito rotating cascade at supersonic speeds will be observed in the interval, a

brief spacing of guide cascade.

K. OQvatich observed that even in case of knife-sharp leading edge at design

entrance angles of flow in the cascade there may appear a complicated system of

shocks. An analysis of theas results shows that the head shocks developing be-

fore the cascade formally Way be divided into three main groups: shocks caused

by the thickness and shape of leading edge, shocks dependirnl on shape of intervane

nhannel (shocks from "out-off' of intervane channel) and shocks (or waves of rare-

faction) caused by off-design entrance flow angle into cascade ( , ). Under

actual conditions it is virtually impossible to divide these shocks, because they

will form a single complex system.

&133. ReduedFw Rate o Gas Throu h aacde.
hmirgrting Car dt onsfI l~pCsaeSsuveraonic flow."

We now write out the equation of continuity for sections of entrance and exit

of uo.•ade (Fig. 8-57) in following form which we know (See Sea. 8-11):
Sq• ,in ,•, --- ,, q ,., ,.n :+•.;-P (8-56) I

This equatio.n may be used for a graphic calculation of parameters of flow in

a cascade.

We note that the axial projection q, is aqual to:

q,4 - sin P, - ..In n - (-7)

On the other hand,

0 -

It follow from this that constant value %1 may correspond to different values

of a and p. . Consequently, at qa " const. the end of vector A deoscribes inO

the polar system of coordinates (I., •) certain transcendent curve. This curve

we shall call the h.o-P'hof the ..wlet._A_.

I•N II II I I I i I I I -



Fig. 8-57. Chart for deriving

equation of hodograph.

In being given different, but constant qa from q. - 0 to q - 1 and from

0 to w. in plane of hodograph it is possible to construct group of curves. makikig

it possible to calculate graphdcally the flow in rotating c&soades.

The !Porm of hodograph 1 for aertain q. is shown in Fig, 8-58. The circle,

corresponding to A 1,0 divides plane of hodograph into two regions [subsonic

( I<I ) and supersonic (X>1)1

At subeonic speeds at entrance the use of the graphic method dooe not cause

unusual diffioulties. Aotually, at ir- I (ideal fluid) q2a ql and the vector

a, with a given %. is found on the same curve (q. - const) that also the veotor

If Is. Consequently, by the known X, and , us find the point A. and the

determirning curve q " oonst, and by ý* at points B and D' we determine the vector

A., (or 1,, if speed at exit is supersonic).

The hodograph method =my be extended also to the came of flow with losses.

Por this purpose w construct the curve (dotted line in Pig. 8-58) from the equation(~I
._, (i+,, ig (8..59)n~It I f -- i•'1 $in •.. -.,.c r

On this curve, we find the points I and 810 corresponding to speeds o0' flow

after caaoada with a consideration of the losses. Hence, it is evident thi.t at it<

the exit speed of flow from the same cascode with losses will be greater, than in

the case to -, .' arid at as> I -less (under the condition of maintaining ti, tame

exit flow angle).
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0,3., V,, 0

Fig. 8-58, Graphic determination of

paraneters of flow in cascade.

Of great interest is the determination of conditions, which at entrance or

at exit of cascade the speeds attain critical values. From (8-56) there may be

obtained that-at A1=. I

arcsin (q,#. sin P.) vx.- arcsin (q,#,). (8-60)

During absence ot losses
u, =- arni. q,.

It is readly soeen that at

q. w= const nd 1. (8-40a)

The critical opeed at exit of cascade is established in the aaae, when

During absence of losses •",--- arcsin q, 6. (8-.6,1a)

It follows from this that during

qjsoeiit and P, > P,.

The values p, •, p;, and also 1t can be determined by awans of the

hodosraph (Fig. 8-58).

During supersonic speeds at entrance not all the modes, corrasponding to hodograph
R 1 0



of speed, are actually admissible. Experiments show that in certain cases at

X1>1. , at entrance into cascade there develop systemoof shocks, not associated with

flow around the profiles; in intersecting this systom of shocks the flow becomes

subsonic. Such modes of flow around active cascades are called "cutoff" modes.

At the same time according to the condition of continuity of motion there is

found to be inodmissible a certain other group of modes with subsonic wid supersonic

speeds at entrance. We shall establish at first range of inadmissible values of ).j.

We consider the motion of the gas in the system inlet nossle--cascade (Fig. 8-59a).

Passage sections in this system are determined by evident relationships:

F ,=al; F,1 = tsi: p,; F=I!tUsin&,. (8-62)

tWe write out the equation of continuity with a consideration of the losses:
F .q F&,-F -. F,. (8-63)

CIL

e.--- - - -

ig. 8-59. Chart for the analysis of 'cutoffi
umodes of rotating cascade.
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"olence it ls evident that the critical speed in section F* and, consequently,

supersonic floii' at entrance into cascade (in section F,) can develop only under the

conditions F'< F2 and F F 2 . At r* F2 the flow before cascade will bV subsonic,

ard consequently, "cutoff" modes cannot be observed.

After substituting (8-62) and (S-63) wid assuming that q, sin , q1 , and

maximum flow rate through the system corresponds to q2 1, we obtain:

" "

It follows from this that the modes, corresponding to condition

are not realizable. q "- •qs. • (8-64)

In plane of hodograph (Fig. 8-58) region, corresponding to the inadmissible

values of l.. at entrance into cascade, is cross-hatched. Thus, before the cascade

there cannot be realised either certain supersonic speeds (region 0-2-3), or

certain subsonic (0-1-2). It is necessary once again to omphasise that region

of impossible modes at entrance into cascade does not coincide with region of "cutoff"

modes. In last case before the cascade shocks appea, and, consequently, the "cutoff"

may form only in the case, when in tho stator there is attained a supersonic speed.

For the solution of this problem it is convenient to use a simplified scheme

of inlet nozule-channel, in which the cascade is replaced by a contracting channel

(Fig. 8-59,b). In such a tube of viriable section at a>sm thespeeds everywhere

are subsonic ('si -- maximum ratio of pressure, at which in critical section A.

In case 4<,, in initial section after section F* there occurs a supersonic zone,

which is enclosed by a compression wave. The modes a<.,. where s. in the ratio

of the pressures, with which the shock is located in section F F2 , theoretically

my be realised in three ways: with a shock in exit section and in intermediate

sections of nossle F. and chaTmlFAI. However, first and third methods of attaining

e•o• cannot be reallsed, since even weak perturbations above the flow result

in a separation of mode. Thus, in the modes .>,>,' with a decrease in counter-

pressure the supersonic region in initial section of supersonic rnossle increases-

shook wave is displaced towards exit section P'.

520

Im=ý I I I I I



At e•tg supersonic son, remains constant and the shock is located in section

Si, cwhh can be determined from the condition, at which in section F2 there is

established a critical speed. A further lowering of counterpressure does not alter

the mode of flow in the system. Wi';h the specific ratio F2/F* and FI/FP. the section

Fn coincides with F 1 In this case before the channel and in channel there is

possible the existence of supersonic speeds.

Consequently, in system nossle--charnel supersonic speeds a be attained only

at . With the specific ratio 2IF and F 1F, in the modes a,..at entrance

into channel there is possible the existence of supersonic speeds.

By returningto the system nosle--caseade (Fig. 8-59,a) we note that the

ratio determines the value of j, for diverging nossle, and •." -. i-

As has been shown above, supersonic speeds before cascade are possible only in

the case, when the equation of continuity with a consideration of the losses is

satisfied: qq' sill q, = . ; "- •- , ,

Here p /p 0 1 is the change in stagnation pressure in a normal shock with the

change depending only on I,; P,/P/ is the change in stagnation pressure in cascade.

At p1I#,,=l and I,-.I from equation of continuity we obtain:
k+ I rI _ (-5

1-)I~ (1 ) =sin;,(8-65)

Formula (8-65) determines in the plane of hodograph the curve, limiting region

of modes, under which supersonic speeds at entrance into cascade is unattainable.

At as,=•-I " .L.jcurves, governed by formula (8-65), coincide

with curves, constructed by formula (8-59).

For practical use it is expedient to construct diagram of hodographo, corre-

sponding to different, but constant values of ql (Fig. 8-60).

Diagram is constructed in following manner. In being given the constAnt qa

aand a number of values of we determine by (8-59) the corresponding valuti of i

In region •>1 we construct also a faxily of curves by.formula (8-65), wNire in

52:1



00

Fig. 8-60. Diagram of hodograph x

this case sin • q. These curves are used for determining the mone of possible

supersonic speeds at entrance into cascade.

For convenience in constructing and using the diagram below there haie been

plotted functions of the one-dimensional isentropic flow:

P1. P 7Po
I,;•: -; -t-atcetera, and also q,-: P. q1.

We consider in a particular example the use of this diagram. We shall asnu

as given the valueS3 qa 0.5 and q, 0.7.

Then sin 2, - 0.714 and 4, - •530'. On horiznntal axis we find two values:
0.7

i i i I ! ... i I i I I ...



a, and x;. By drawing from point 0 two circles with radii x, and A; We shall

*obtain at intersection with the radial line ), - 45030' the points A and B, corre-

sponding to the hodograph q. - 0.5. After determining by the indicated method of

entrance and exit triangles of speeds, we can find the parameters of the flow. As

a preliminary it is necessary to make check of the possibility of attaining a speed

x" at entrance into cascade.

For such an evaluation it is necessary to know . We assume 36050'.

Then during a supersonic speed at exit of cascade q sin , 0.6. Consequently#

before the cascade a supersonic speed is unattainable, since the point B is found

in the region limited by dotted curve j,,, - 360501.

The hodograph I can be used also for an approximate calculation of angles of

fiow deviation in nozzls section both in guide and also rotating cascades.

For this purpose as a preliminary from equation of continuity (8-56) during

an absence of losses (,,=I.) we obtain:

whence

In considering that at P2  p Pl and q - q , the angle of deflection of flow

in equal to w-=,-,1  we reach the conclusion that =

At =0,-- -- 0'ond, consequently, at any supersonic speed of the incident

flow a deflection in nozzle section does not occur. In the case, when ,, <,12,' <0,

i.e.jin nozzle section, a contraction occurs instead of an expansion. An analogous

conclusion can be reached also in the analysis of flow in the plane of hodcograph.

Such behavior of a supersonic flow in impulse cascades is associated w.th the

fact that at supersonic speeds perturbations are not propagated against the flow

and ihe pressure before the cascade p, may be selected orbitrarily. This condition

is disturbed only in "cutoff" modes i.e.,in the case when vector x' lies Ir region,

1W.aited by the dotted curve q r2a ' sn .
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Thus, prior to the arrival of "cutoff" modes the exit flow angle from cascade

can be determined by the value -,==-(p•P,/j in the basic family of curves c const,

in Uhich 18 is independent of the geometric parameters of cascade and the Mach

number. In "cutoff" modes the vector A' is found inside region bounded by the

dotted curve q. - const; angle of exit is determined by a, on the curve qawsin ,

i.e. it depends on geometric parameters of the cascades.

In Fig. 8-61 there are presented the design curves of the dependence of exit

flow angle from cascade on ý,and 'ta at . 20M 18020 and %~ -M 2 t. where X K
is the design value of M number for inlet nozzle. On the graph there have been plottod

also experimental points, obtained at 4t - 1.62. There way be noted a satisfactory

agreement between the calculation and the experiment.

pa .. -"l T .... -]II...i1I

.,tem.

Fig. 861. Dependence of exit flow angle ;, from
i3UI.e •ascade on 1, at M2t -kv and 2,0 - 180201.
KE: &aI Calculation; b) Experlment at m 1.62.

8-1A. Profiling and Results of Experimental Investigation
of Impulse Cascades durirg High Speeds

The designing and manufacturing of cascades profiles for transonic aid

supersonic speeds are realised experimentally. Experiencs shows that supersonic

impulse cascades have small losses only in the case, when at entrance into cascade

flow is stagnated down to low supersonic speeds. We discuss two possible methods

of profiling of supersonic impulse cascades with the deceleration of flow at entrance.

Fiist method cunsists in the fact that the deceleration is controlled in entrance

Si1



seetor of back edge of profile. For this purpose the entrance sector of back edge

is made concave for a smooth deceleration of the supersonic flow (with the possible

formation of an isolated curvilinear shock) or with angular breaks for a stepwise

deeeleration* in a system of diagonal shooks.

The second method is based on decelerating flow in curvilinear or diagonal

shooks, organized in entrance section of channel. Here the entrance section of back

A

00

Fig. 9.62. Schematic diagram of active supersonic
cascades.
a--with stepwIse deceleration at entrance; b-with
smooth deceleration along back edges at entrance; c-
with deceleration in diagonal or normal shocks on con-
cave surfae.

edge is made rectilinear or with a very small curvature, and the design an .le of

leading edge is selected in such a waythat deceleration of tht flow occurs in the

shock, developing from side of concave sirface.

At small supersonic speeds (14< 1.25) losses in a normal shock are small

*.ae Chapter 4.
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(1-1.5%). Losses with an expansion of the flow in nozzle section also can be

reduced to a minimum. Therefore the intervene channel of cadaedoperating at low

supersonic speeds, can be designed as contracting in such a manner that ahead of

it a normal "cutoff" shook generates. At high supersonic speeds it is expedient

that the intervane channel is made convergent-divergent.

The possible shapes of profiles and channels of active supersonic cascades

are shown in Fig. 8-62.

As a theoretical analysis shows even in an intervane channel of relatively

great curvature it is possible to avoid formation of compression waves. This

conclusion is corroborated also by experimental data.

In Figs. 8-63a-d, there are presented a schematic diagram and photographs of

spectra of flow around an TR-ZA impulse cascade* by a supersonic flow. Ahead of

a thick leading edge there appears the shock wave 1. At entrance edge and on back

edge of profile the flow is accelerated in waves of rarefaction. The waves of rare-

faction terminate in shock 2 which in combination with shock 1 forms the bow

L). -shaped shook. At point A there is observed a separation of the boundary lay*r,

the % -shaped bow shock causes a discontinuity in the boundary of vortex one

at point B. However the separation of boundary layer is maintained up to exit

section of intervane channel, where boundary of vortex sons and the concave surface

of profile will form hypothetical channel of practically constant width. At the

place where an edge shock occurs on back edge there occurs a local separation of

boundary layer owing to the curvature of back edge; after the shock (point C) the

flow in accelerated. In approaching the trailing edge there will form the isolated

shock wave 3. After the edge, there appears a second edge shok 5,. Both shocks

merge into one A -shaped shook.

In cascades of group A at supersonic speeds there occur additional losses: in

*Cascades in group A have been designed for a flow-around by a flow of subsonic
speeds.
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the nompreossion wves at entrance, in vortex sone, forming as a consequence of

separation of boundary layer after shook 2j in the edge and reflected shocks 4 and

in the X -shaped shook. With an increase of speed these losses inteneively increase.

,1,

Fig. 8-63. a-schematlc diagram of shocks 1-5 and points A, 13, C; Figs..
8-3b- e-63d-photographs of apeotra of air flow in TR-2A impulse cascade;b- 1.205; -M1 -1.395; d-M1  1.1635.

1 0

Cacadee of group D, developed at Moscow Power-hgi•neering Institute for

transonic speeds, are characteriaed by esaller shockness Ao leading edAe and

curvature of back edge in entrance section and nozzle section. In these cascades

before leading edge there develops a curvilinear shock a (Fig. 8-64) of lesser

intensity. On the curvilinear surface of back edge (terminating A) there occurs an

intense acceleration of the flow. The shonk enclosing the sone of expansion is loc.&ted

inside channel (channel No 1 in Fig. 8-64), In case the re-expansion is small,

the stagnation occurs only in the forward shook (at point B, channel No. 2 in
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Fig. 8-64).

With a great constriction of the channel ahead of it (not ahead of edge)

there appears a shook wave ("cutoff" mode, channel No. 3 in Fig. 8-64). Such a

location of the shook assures a stable subsonic flow in the intervane channel. If

by profiling the exit section of back edge small losses are added during an expansion

of the flow. in nosals section, then such a cascade my be found to be highly economical

up to Ias 1.25 numbers.

In Fig. 8-65 •ures of losses irn cascades of groups A and B are presented, At

M24 0.95 losses in a TR-lA cascade are lower than in cascades of group B. However

at (2 > 1 losses in the TP-lA cascade sharply increase1 in cascades of group B at

X2 ;p 0.95 to 1.25 the losses are lower,

Value of critical N 2 nuber for a cascade of group B in all cases is higher

than for a cascade of type A.

In a TR-2B cascade the decrease in losses occurs up to X - 1.0, However,,

at 3(2> 1.1 there is observed a more intensive increase or losses, than in the

TR-lB cascade. This is ciused by the greater curvature of back edge of profile of

TR-2B in nosael section.

Fig. 8-64. Schematic diagram of supersonic

flow in oascades of group B.

In Fig. 8-66 there are presented curves of the pressure distributions about

the profile of a TR-IV cascade at the Moscow Power-Engineering Institute for

supersonic speeds by decelerating the flow in oblique shook, developing inside channel

from direction of concave surface. The intervane channel of the cascade is a conver-

gent-divergent channel. The minimum section io located in entrance section (points 8

and 7 and 13-14).
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Fig. 8-65. The relationship between profile losses
in cascades of groups A and 3 on the , numbers.
KM (a) TYl- with a truncated baok Gdg; (b) TR-lA;
(o) TR-2B; (d) TR-lB.

The stagnation of the flow occurs ahead of entrance section of channel (point

10-32). At M, > 1.0 before channel there gnerates a normal shook which with an

increase in M 1 number approaches the entrance section.

At 1() 1. 5 the bow shocks enter into the intervene channel and the de-

coloration occurs in a system of diagonal shooks; in the channel the flow is

* accelerated, where in sons of minim.so section on back edge of profile there is detected

a deep rarefaotion. With an increase of M, the minis= pressure decreases, and the

beginning of diffuser section is displaced along the flow.

In Fig. 8-67 there are shown spectra of the flow around cascades of group B.

It is oharacteristic that at fairly sufficient large M.1 numbors, speods in the inter-

vane channels are supersonin, but shook waves ar absent, despite the greater curva-

ture of the channels. in entrance section of profile, before edge, there will

form a system of forward shook.

In case the cascade is designed by tho method of etepwise deceleration of flow

along baek odg of profile (system of diagonal-normal shocks), at high supersonic

speeds there will form two shooks one of which is located at place of discontinuity

(Fig. 8-67,b). In Fig. 8-68 there is given a comparison of losses in impulse

cascades, designed by the method of deceleWatIng flow along back edge of profile

and by method of decelerating in oblique shctk on concave surface. It is possible

to note that first method makes it possible to attain somwhat the better
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Fig. 8-66. Distribittion of pressures abo~t. profile TR-IV (convergent-div~r-
gent channels) in oascIg4*.

t 0.5751 890051; 20".

Flig. 8-67. 1--spectra of' air flow Ini casca~li With a o rve rpent-divergent chan-0nel~s (Th-I); T - 0.575; 0 - 9O, A 18o; a--M1 -. :134; b--vj 1.64- 11-.-upsatra of air flow in oAS~ade Vith st#pwise deceler~ationi at enrtranioe 0. 625;900 22901' -M 1.47; d--Ml 1.67



S. . .. ., ..... ' . ........ .. . ,

-. ......L

Fig. 8-68. Comparison of characteristio& of super-
sonic impulse casoades of different types.
I, 2, 3, 4-casoades with oonvergent-divergent channelol
1, .1-w-th deceleration in entrance shooksl 5--wth

-otnstat section of channel; 6--TR-IBI 7--TR-IA.

Flg. 8-69. "elationship between end losses in cascades
and X number.
1--TRZIB at 01 - 18; 2-TR-1B at 21's; 3-TR-1B-1
at P, - l8;"4--TR-2B ab •h• K4; 5--TS-IA at 0. - 900.

characteristics of a cascade at ?)>1.3 (by 1 to 2.5%). However, this conclusion

is made on the basis of a limited amount of experimental data.

fklerimntm show that at transonic and supersonic speeds end losses f•,r all

cascades greatly decrease (Fig. 8-69). Also the nonuniformity of exit flov angles

decrease according to the height of the cascades.
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CHAPTER 9

FWW OF, GAS IN A TURBONACHINE STAOG

9-1. Mundment!a1 Euton

In a turbomachine stage there occurs a conversion of the potential energy of

gas iLto mechanical work (turbine) or mechanical work into potential energy of

gas (compressor). In both csesm, flow of gas makes an energy exchange with the

environment. I

We shall oonsiler the scheme in principle of a turbine stage with an axial

flow of gas. In Fig. 9-1 there are shown the basic elements of such a stage. Through

inlet duct 1 gas is supplied to stationary guide row 2,where part of its potential

energy will be converted into kinetic energy. Aoquiring in the guide row signi-

ricant speeds, the flow of gas passes through clear4nce 3 and impinge.s on moving

blades 4o fastened on wheel 5. Here there occurs a transfer of energy to rotor of

turbine.

With the radii r and r4dr we draw two cylindrical sectionap the axjs, of which

will coincide with axis of turbine. By these sections we shall divide the elementary

stage of turbine; developing it into a plane (Fig. 9-2,a), it is possible to trace

character of change of speeds in the flow part of stage.*

We shall introduce, in distinction from preceding, the following designations

*The guide and moving rows of the stage will be called the flow part.



of speeds:

am-speed of absolute moti.on of gas;

w-speed of gas in relative motion;

u-speed of xigratory motion (peripheral speed))

au and w--projections of speeds of absolute and relative flows onto diroetion

of speed u;

a 0 w -- projections of speeds of absolute and relative flows onto direction of

axis of rotation;

S# V --radial components of speeds of absolute and relative flows.

r r

pow)

Fig. 9-1. Schematic diagram of turbine stage in an
axilal flow of gas (a) and distribution of parameters
of' stagnation, static pressures and speeds in flowprt (b).

SThe subscript I designates speeds referring to enti-y to,, and the subecr:.pt 2 to

6',L4



exit from moving blades,

The operation of turbine atage can be traced by Figs. 9-1 and 9-2. In the

vane channels of guide row, the flow of gas accelerates and simultaneously turns,

leaving it with a speed c1 directed at an angle ia to axis of row (Fig. 9-21a).

The potential energy of gas is transformed into the kinetic energy of flow.

Onto moving blades the flow enters with a relative velocity wl, which readily

is obtained, after constructing the entry triangle of speeds.

In the vane channels of moving row there occurs a turn of the flow in the

relative motion; in this connection, the forces of gas pressure gas produces work

1 °
' •a0 ,• ...... tin - ,-0

w sectuion if

Fig. 9-2. Development of flow portion
(a) and triangles of speeds of axial
stage (b).

of rotation of turbine rotor. The flow emerges from moving blades with a relative

velocity w2 at an angle p to axis of grid. Knowing the peripheral speed u it

is easy to construct the exit triangle of speeds and to determinwe speed of the

absolute flow at exit of stage c2 (Fig. 9-29,a). Frequently the entry and exit

triangles of speeds are expressed from one pole, as is indicated in Fig. 9-20b.

Thus, energy of gas is transmitted to rotor of turbine owing to the fact that

the forces of pressure during turning of flow on the blades produce the work of

rotation of rotor. As a result temperature and pressure of stagnation of absolute



flow decrease so that

and

A characteristic peculiarity of the considered process is its multistage

character: the potential energy at first is transformed into the kinetic energy

of moving gas, and then on the moving wheel the kinetic energy winl be 4onverted

into mechanical work. Such process in pure form takes place in .=n •cttive stags:

the static pressures at entry and exit of moving row Are approximate37 identical,

and the speeds w, and w2 differ only on account of the losses in moving row.

In a purely reaction stage both components of the process proceed simultaneously

on the moving wheel. The flow of gas in the moving channels, in the relative

notion is accelerated and simultaneously realizes the work of rotating the rotor,

Widely used are intermediate types of stages, in which rationally there are combined

S0 both principles-the active and reactive. In this case con'rsalun of potential

energy of gas irtto kinetic is realized partially in the stationary row and partially

in the moving channels.

The change in static parameters of flow and of parameters of stagnation in

flow part of such a stage is shown in Fig. 9-1,b.

The stage may be realimed also with a radial flow of gas. In such a stage

the gas moves in radial planes from the axis of rotation to periphery or, conversely,

to axis of rotation. The radial stage can be of active, reaotivoe or intermediate
type.

Diagram of the flow parts of stages of turbine with radial flow of gas are

shown in Fig. 9-3. In radial section there are evident the shapes of pro riles of

the gutide and moving rows of the stage and triangles of speeds at entry aid exit

of moving channels. We note that in radial stoe the peripheral speed vaies from

entry to exit, section of row.
4
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In c.ertain stages tho flow of gas is directed at an angle to the axis of

rotation. The radial components of the speed c2 are not equal to zero and in a

analysis of proportieo of the flow must be considered (Fig. 9-4).

In a compressor stage (axial or centrifugal) thore occurs a transformation of

mechanical work into potential energy of the gas. Channels of the moving row 1 of the

Fig. 9-3. Diagram of centrifugal
(a) and centripetal (b) radial
stages of turbina.

axial compressor axe expanding channels (Fig. 9-5). The pressure of gas in the

relative motion increases, and the speed decreases. This process is continued in

stator 2. The enthalpy of total stagnation in the absolute motion increases.

In the centrifugal compressor stage the motion of gas is realized from center

to periphery (Fig. 9-6); the moving blades of wheel I form expanding channels in

which there occurs a stagnation of the relative flow. The compression of the gas

can be continued in the vaned diffuser 2.

In &A accurate posing of problem the flow of gas in a turbomachine stage is

described by differential equations of the three dimensional flow of a viscous

compressible fluid. Approximate solutions are based on equations of an ideal

i__I_____IIII___IIIIIIIIIII__i_.. 
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Fig. 9-4. Diagram of diagonal Fig. 9-5. Diagram and develop-
stage. mont of flow part of axial

compressor stage.

compressible fluid, derived in Chapter 1.

The initial equations (conservation of momentum, continuity and energy) are

expediently written in a cylindrical system of coordinates. An the independent

O variables, as previously, there are selected: radius-vector r, the vectorial angle

0 , and the a axis. The direction of axis x coincides with axis of rotation of

turbine. Then the system of equations of conservation in absolute steady motion

(IPa =dp1'di --t dC/( --de.d/= 0)

at R==O!--Z-O reduces to equations (1-14) and (l-17a).

For investigation of flow in moving row, the fundamental equations of ideal

fluid expediently are written for the relative motion. Here there are used the

evident relationships (Fig. 9-2):

w, =c; m,;tC, and W. -C. -M C-0Fr

where w is the angular velocity of rotation of moving row.

A

Fig. 9-6. Diagram of centrifugal compressor
stAge



After substituting these relationships in equation (1-17a) for steady relative 1
action we obtain:

+w w0w __L LPI Op.

-2p ,Or.
dgri ON wit ON(9"1)

W+7 -Or +0. •-i'Op.

+ + 2,A cc, -. - Il,
Owa wm 0% Ow

I Op

Differential equation of continuity for a steady relative flow has the form:

o(FW,) . I ') ) (+" L+.)O (9-2)

System of equations of motion (1-17a) and (1-14) or (9-1) and (9-2) is

supplemented by conservation of energy and isentropic process equations. The system

of equations determining the three-dimensional steady motion of an ideal compress-

ibie fluid in a turbomachine stage is closed.

We turn now to the derivation of equation of energy for stream of gas in the

flow part of stage. The equation of energy can be written in paramneters of absolute

or relative motion. In first case in equation of energy there are introduced terms,

uonsidering the energy exchange between flow and the environment. In second case

(for a relative flow) it is necessary to consider additional forces, the introduction

of which makes it possible to consider the relative motion as if it were absolute.

- aSuh additional forces are the Coriolis force of inertia and centrifugal force.

The equation of energy for absolute flow we shall write in the form of the

first law of thermodynamics. Taking into account the assumptions made we obtain:

di+ cdc - gdL, = o. (9-3)

Here LT ise the work being done by the gas.

The magnitude IT can be determined by means of the equation of moments of

momentum. Moment of forces acting on the moving blades during a steady motion



will be:
Af" (C, cos -r - t-, Cos Mrd,

whire G is the flow of gas through the row per second.

.&I.ltiplying Mu by angular velocity of rotation of row w , we shall find the
work or power per second which the blades exchange with the gas flow,-

'M -- (caucs,., -- cal, Cos. I,).

Consequently,. the work relating to weight of flowing gas is equal to:
9.--T-,") (9-4)

Equation (9-4) was obtained by Euler. In differential form, the Ruler equation

is: dL, - d (9d5)
Since in a turbine the gas performs work, then along stream of aýsolute flow

d(cu)<O. For a compressor stage expression of the external work is analogous, but
in this case d(cuc)> O. Using expressions (9-3) and (9-5)1 we obtain the
differential equation of energy for the flow in absolute motion:

di +cc M- d (ca) = O. (9-6)
In accordance with the law of conservation of energy the change of kinetic

and internal energy of gas In the relative motion is equal to the amount of supplied
(or diverted) heat and to work of actual and secondary forces. Since the Coriolis
force of inertia is directed normal to axis of stream in the relative motion (to
vector w), then the work of this force is equal to zero.

Thus, of the number of secondary forces in the equation of energy for a flow
of gas in relative motion, it is necessary to introduce the centrifugal force,
directed along a radius normal to axis of rotation. In the particular case of an
axial stage, the vector of centrifugal force is normal to lines of flow,, and work of
centrifugal forces also is equal to zero.

Equation of energy for a flow in relative motion is obtained on the basis of
O first law of thermodynamics (9-3).
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2 2 2 2
Considering that c -

0 r + ca + Cu and using the connection between

absolute and relative velocities, we transform expression (9-6). We obtain;
di + md - ,.mi ---- 0. (9-7)

The integration of equation of energy (9-6) for a flow in absolute motion

gives:
i+ + xt -consfl . (9-8)

The integral of equation of energy of flow in a relative motion (9-7) is equal to:

I -- "onst. (9-9)

The transition from equation (9-8) to equation (9-9), obviously, is made by

means of formula (Fig. 9-2,0b)
-- -=cu. (9.-10)

The obtained equations for the relative motion can be used for calculating

the stage of not only a turbine, but also of other tiubomachines (compressor, fan).

The direction of the energy exchange (removal or supply of mechanical worý) is

not important. This remark is entirely valid only on the assumption of isentropic

flow in a turbomachine stage. Under actual conditions the motion of the gas is

accompanied by losses. The direction of the energy exchange considerably affects

structure of flow (the nature of distribution of parameters in flow part) and,

consequently, the efficiency of the stage.

In the absence of losses, the change of state of gas in the absolute and

relative motion is subject to the isentropic law, which for an ideal gas can be

represented by formula p,'P" const.

In this case# integrals of equations of momentum and energy coincide. Indeed,

for a one-dimensional flow in the absolute motion the equation of momntum has

the form: cde-•+d d(cqt) =0.• • (9-u1)

Considering relative motion of gas in the stage as steady, we shall write the

equation of momentum in such a form:

.d+r _ r-* cos (r.r),d.v" n O,



where ro'cos(r x)dx" is the impulse of centrifugal forces.

Since r0 =I a. then dp .

wd+ .-- (9.-)

Integrals of equations (9-11) and (9-12) coincide with equations (9-8) and (9-9),

if di.:dp/p. which corresponds to an isentropic process.

Equations of momentm for absolute and relative motions taking into account

losses can be obtained by introducing in (9-11) and (9-12) the impulse of forces

of friction; in this case i, c and w also are parameters of the actual flow.

In investigating a stage within frameworks of a simplified one-dimensional

diagram of the flow there is used equation of continuity:

m - Fpc - Fpw-- Frq~p.-a, = eqOP.,

where F -- area of section, normal to vector oa speed c;
a

F--area section, normal to vector of relative speed w;

%and qw--are the reduced flows during absolute and relative motions.

From the equation of continuity we find:
F ta go _a.,_Y

where P a, Pa,, , ,.are the critical densities and speeds for absolute and relative

flows.

Obviously, the static parameters p, p, T both in the absolute and also in the

relative motions are identical.

The actual process of motion of gas in flow part of stage has a number

of peculiarities not considered by the above derived equations. Thus, the flow

of gas in the clearance between guide and moving rows possesses nonunifoiuity.

In the moving channels, receiving the flow from the clearance, flow of gas turns

out to be periodically non-stationary, with continuous pulsation of the spieds and

pressures.

In addition, the flow realizes a heat exchange with the environment ij connection

* with unproductive losses of heat and owing to the arranged artificial coolirg of

blares subjected to high loads. In equation of energy this peculiarity cai be

F)4 1



considered by the introduction of an appropriate term which takes into account

the external heat exchange.

In the notion in the flow part, the main flow branches; a certain quantity of

gas, unpassing through the moving row, flows into clearances between stator and rotor.

Depending upon distribution of the pressures in flow part there may occur a suction

of the gas through the clearances into main flow.

Thus, in the general case, the flow of gas in a stage is subjected to different

external effects exerting an influence on process of conversion of energy. An

evaluation of these influences is made on the basis of experimental data.

9-2. Earameters of Flow in Absolute and Relative Motions.
fte-dtjensional Flow Diagram.

The magnitude of the right-hand constant in energy equations (9-8) and (9-9)

T+ +1 (9-13)

can be determined from boundary conditions.

In calculating the stage of a turbine usually there are known the parameters

of flow at entry to rotor wheel. For the entry we have:
4 - -- •1 "!- + '=c onst.

Designating, as before,

S (9-14)

where 1. is the enthalpy of a total isentropic stagnation in an arbitrary section

of flow in absolute motion, we write (9-13) as

S+ (9-15)

or for a perfect gas:
-C' ae I ---r• tip•

where loolp T7care the enthalpy and temperature of the isentropic stagnation

at entry into rotor wheel in the absolute motion.

On the other hand, during total isentropic stagnation of flow in



relative motion, its kinetic energy reversibly changes int o heat, The enthalpy

of stagnation is determined by the obvious equation
•-"+ i == low. (9-16)

Consoequently, equation of energy acquires the form:

I?, (9-17)
where i ow is the enthalpy of total stagnation of relative flow at entry to rotor

Wheel.

Let us note that if the flow at entry is not swirling and oul - 0. then from

(9-15) it follows -,- r,,+'=•. '.. -•,

Such a case can take place only for a purely reaction stage or for a centrifugal

compressor stage.

Takitg into account expressions (9-14) and (9-16) equation (9-13) can be

written as:-

The-connection between i i i and i can be presented in the form:
h oe0, owl 0 ow

-. i,--g (9-19)

(9-196)
Correspondingly we obtain dependence between temperatures of stagnation in

absolute and relative flows:

, , -C (9-20)

Equation (9-20) shows that temperature of stagnation in the general

case is variable along the stream not only for the absolute, but also for

relative motion. We shall present (9-20) in a somewhat different form:

ra r-"'. (9 .-20)Xr i T.,eX_;- cjI ('

T =! - (9..,
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The difference between temperatures of stagnation 0
(Vc, -- (9-21)

From equation (9-20a) it follows that temperature of stagnation of relative

flow changes corresponding to a change of peripheral speed along the tube of flow.

At u - const, temperature Towis constant. On this basis it may be concluded that

the temperature of stagnation Tow is constant in a stage with an axial flow of gas.

In a radial stage T along the tube of flow changes. If in such a stage theow

flow is directed from the axis of rotation to the periphery, then T increases.

In the case when flow moves towards the axis of rotation, T decreases.ow

The obtained result has a simple physical explanation.

The total energy of the relative flow, proportional to To0 w varies owing to

the work of centrifugal forces, into the field of which the gas moves. If the

radial components of the speed are not equal to sero (or - w 0) and stream of

gas moves not only along axis of rotation, but also radially, then centrifugal

forces perform the work of displacing the particles in a radial direction and increase

or decrease the total energy of particle depending upon direction of flow. If the

direction of relative flow coincides with direction of the centrifugal forces

(radial stage with flow of gas towards periphery), then T increases. Otherwise

(radial stage with flow of gas towards axis of rotation) the total energy decreases.

Formula (9-20b) shows that temperature of stagnation in the absolute motion

in all cases diminishes. From a consideration of the principle of operation of a

turbine stage it follows that in arbitrary section of a tube df flow C4u<cIIIuU

and diminishes along the direction of flow, since gas performs work in rotating

the wheel.

In the compressor stage, conversely, c,,>C,•u1  and increases in the direction

of flow, since work is supplied to the gas.

We now turn to equation of energy (9-13). We note that the magnitude of the

constant on the right-hand side of equation (9-13) is different for different streams,

LL IL



since c u may change during transition from one stream to another. Hence, weu:i 1
* conclude that, strictly speaking, the equation of energy must be used individually

for each stream. For the channel as a whole, equation (9-13) can be used, if all

the magnitudes entering into this equation are calculated as averages along

the section of channel.

To the equation of energy in a relative motion it in possible to ascribe the

.we l-known form, replacing I by the formula

then according to equation (9-16)

or
' + t, n ,o.w (9-22&)

where p, pow, a,, are the pressure, density and speed of sound in an itentropically

stagnated relative flow.

We emphasize once again that the speed of sound and static parameters of the

flow P, P and T for absolute and relative motions have one and the same magnitude.

The speed of sound of a stagnated relative flow changes along the stream in

accordance with change of enthalpy i0o.* With any changes iow along stream the sum

of the kinetic and potential energy of relative flow in given section by eqation

, (9-16) is equal to i .In a particular case, the speed of relative flow in aow"

certain section can attain the local speed of sound; then

From equations (9-16) there can be obtained value on right-hand side o.' the

equation of energy in the form:
*a *m a! +, .hfI

I" •T=-r "•"• ((,,-22b)

After equating right-hand side of equations (9-22), (9-22a) and (9-22b), we

obtain: i. =-+ "--I P -'.-

t`4



Analogous transformations for a flow in absolute motion results'in the

relationship *+I k
_~ =cc,,kt ,I..= ,C.. •r- - I- h_ -==r -

"$"-T C• --(11" - ).

By means of these relationships it is simple to obtain an expression for the

charaoteristic speeds aft , o , MA , etc. Thud, for example, for relative

flow w find: ' /8..'V i=3
• ,/ s +-•.. ,r,.- •1-?3

2 F, awl(9-23)

For an absolute flow

(9-24)
mJV2.~P4 T+L -,c, U

Prom equation (9-24) it follows that oharacteristics of the absolute flow, 0
depending on magnitude of total energy 10 (from parameters of stagnation), change

along the tube of flow. Consequently, ,a, oX. and aso are variable magnitudes

for a streem of gas in the absolute motion.

In the relative motion the oritical and maximum speeds may ohange or remain

constant depending upon whether or not the peripheral speed u changes. If along

the stream u - const (stage with axial flow), then i - const, and correspondinglyow

c- onst and w - const. With a variable peripheral speed along stream these

basic characteristics of the flow of gas change according to the change in u.

Equation (9-21) makes it possible to establish a connection between temperatures

of stagnation in relative and absolute flows in following form:
TM I 2a, -- U)a. . (2e- -- •u"

After substituting

0



ewe obtain:
-_- "C'=l P • (9-25)

After substituting (see, for example, triangles of speeds in (Fig. 9-2,b))

(9-26)
equation (9-25) is transformed to the form:

row " (9-25a)where u - U_

Equation (9-25a) shcws that along the stream ratio of the temperatures of
stagnation changes. At u - 0 and u. - 2ou the ratio To/To. 1. The first case

Go~respondA to a stationarY wheel (U - 0), when mechanical work by the gas is not
done (oau - 0). Second value u determines that section of the stream, in which
teperature of stagnation in the absolute and relative motions are identical.

The dimensionless speeds MAl, Al,, A. and A are associated with the temperature
of stagnation in a given section by well known relationships (Chapter 2):

for a relative flow
r +•T MI R-Y f-- --- *• (9-a?.)

for an ab4olute flow TOO 12

Henoo, by well-known formulas of the isentropia process:

P., ~ A =TwV Io aT t. cetera.

there can be obtained a connection between Paw and L ,, and I,, etc.
P p

By means of equations (9-27) and (9-28) it is possible also to obtain a
relationship between parameters of the isentropic stagnation in absolute arn d relative

Ik-14,I 
A2flosl: 

W. . ;p AI
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and tow 0
a !_F~ (9-31)

Taking into account expression (9-25a), we express the ratio P WPM in the

form: ,

Pat U -•- ]I (9-32)

By means of equation (9-20) there is readily obtained a relationship between

parameters of total stagnation at entry and at exit of wheel.

For a relative flow we obtain [sse formula (9-20a))

r1 -- I - w. .., 4 ---I

where

S (9-34)

V'M - =I W.'s (9-35)

Correspondingly for the absolute flow (see formula (9-20b)]
, 7,,, - C,, ,, ,-S==,I lot)-, im-'' 9- 6

where

We shal. express : ± by cMAx1; then
!-- u•, (c' ,,.'J(9-58)

and
,",

pw 1 - ,uit E(_4~ (9-39)

Into formulae (9-27)--(9-39) enter the dimensionless speeds of the absolute

and relative flows. The connection between M0 and M is expressed as:

H, .(9-40)

Fram the equation

mi =" + ', -' 2cu (9-41)

we find: + 2 k .) a.,

rem, (9-42)
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U
where u•.

The last equation shows that the ratio of temperatures of stagnation To/Too

serves as the conversion factor from an absolute flow to a relative. This magnitude

varies along the stream. At the entry and at exit of rotor wheel T for a given

pattern acquires definite values.

The basic gas-dynamics relationships presented above are valid both for axial

and also for radial stages of a turbomachine.

Practical calculations show that influence of the centrifugal effect in the

axial stage is small.* This conclusion is readily reached by means of equation

(9-33), from which it follows that if the r'atio u2 /u 1 differs little from unity,

then a chnige in the temperature of stagnation of the relative flow is negligible.

Only with a significant change in the peripheral speed along tube of flow, as,

for example, takes place in a centrifugal compressor or radial turbine stage the

*influence of indicated effect will be significant.

For an ordinary turbine radial stages the ratio of the peripheral speeds u2/u1

fluctuates between 1.02 and 1.10. On the basis of Fig. 9-7 we conclude that for

4*17._ _. - _ I i ._ ._ ,

409~O W4 )Uo 40 V 112 414

Fie. 9-7. Change of temperature of stagnation of
relative flow depending on u2/u 1 and

*Here there are not considered the influence of centrifugal forces on ,oundary
layer in the vane channels and also ot'sr peculiarities of a three-diensional flow
of a viscous fluid in a stage with radial speed components.
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U2/U1 a 1.10, the relative change in temperature of stagnation T O at u "W 0.3 to

0,5 amounts to 0.25-0.70% i.e., it is small,.

We shall illustrate the change of state of gas along stream in thermal diagram

taking into account losses of energy in elements of the turbine stage. Parameters

of the total stagnation at entry in the guide row, we find at point 0 (Fig. 9-8):

p O and ± *l. The corresponding static parameters are e-termined by point 0 1'.

If we designate the static presseire after guide row p,, then point 1' fixes state

of gas during isentropic expansion, and point 1 shows the actual state of flow

(taking into account losses). The loss of energy is expressed by the sector 1-1'.

Pressure of stagnation of the absolute flow aftex the guide row will be peel

(enthalpy of stagnation remains constant). The difference p - Pool is equivalent

to the losses of energy Ah,.

The loss factor in guide row is equal to:
~7'2 I ''Ak (h t +I~ t o••

where If is the dimens onless speed, equivalent to an isentropic differential

in heat in tge stage H .

The difference between enthalpies in the absolute and relative flows is deter-

mined by equation (9-19). Flotting the magnitude i Oc - i ow from point 0' on

line i l . conet, we find point 2, which determines state of stagnated relative

flow at entry to rotor wheel.

In the moving channels as a result of losses, part of the kinetic energy

irreversibly changes int6 heat. As a result the pressure of stagnation in the

relative motion falls. If along the stream of gas, the peripheral speed does

not change, then hen corresponding process is expressed by the 1311a 2-3(i,, 3 conet).

With an increase of u along stream (radial flow from axis of rotation to periphery)

__ ow increases (dotted line 2-31). If u decreases, then i Ow diminishes (line 2-3").

• static parameters at exit of moving row are determined at oint 4, where

the sector 3-4' (or correspondingly 3'-41' and 3"-4') is equal to -
2g
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The loss factors of kinetic energy in the moving row wi1l be:

h-I

The flvw leaves the stage with a certain absolute velocity a2 Part of kinetic

energy, equivalent to speed c2 2 is the loss (Ah,).

The lose factor with exit velocity A-1

where p O 2 is the pressure of stagnation of absolute flow after the stage;

p10 is the theoretical pressure of stagnation after stage (Fig. 9-8).

Ac

I)I
A- 

I

II

Fig. 9-8. Process in a thermal diagram for a turbine stag.

As can be seen from formulas, losu factors I and C, depend in implicit

ul
form on t-I since on this magnitude the ratios of the temperatures LOW-,w and i

Go" T 01 Tool
depend. The magnitude C,, characterizing the loss in the stationary row, also depends

on wo; with a change of Ul- the M and Re numbers change at exit of the guile row.c551



In the thermal diagram we plot from point 4' upwards the magnitude 4h.;,

then we obtain point 4, characterizing state of stagnatiid absolute flow after the

stage. Let us assume that all kinetic energy of the absolute flow after the stage

irreversibly changes into heat; then on isobar p2 at point 5 there is determined

the state of gas after the stage (process of stagnation after stage is assumed

isobaric).

We introduce now the concept of degree of reaction. The degree of reaction is

the ratio of the available thermal differential in movinR row to the total available

thermal differential in the stage. ConsequentlTy, the degree of reaction indicaces

that part of the available potential energy of gas (heat) which will be converted

into mechanical work directly in the moving row (on wheel).

By definition (Fig. 9-8)
ASS "iI -_12_1 _Re= . l,, = io I

where h02 is the isentropic available thermal differential in moving row.

The formula for the degree of reaction can be converted to the form:

It follows from this that for an axial stage ( TO-. 1) the degree of reaction
Towl

vanishes at A 2 Awl# For a radial stage P 0 at

From this formula it follows that the stage of reaction can be equal to sero

with the motion of gas in a radial stage from the axis of rotation towards periphery

(u,>ua) at lW1 >1.2.. With the motion of gas towards axis of rotation P=-O, if

lI., < 1.,.

The actual specific work developed in a stage for any degree of reaction p

can be calculated by the formula

Tt 
A4

I -I R o



Hence, by moans of equation (9-36) we find:
ALr-=-- 21o0,1 N --~

Then the efficiency of the stage on the rim can be found by the formula 1.

After substituting here the values AL and H, we obtain:
T 0

0 2 *uI +

Frou the formula it is clear that even in the case, when energy losses in

the guide and moving rows are absent ( O, = C 0), the efficiency of stage on

the rim is equal to zero at .C•u==0.

Formula (9-37) shows that such a condition is fulfilled, if

It is obvious that in this case, flow of gas in the stage does not perform

work. The magnitude Z±c--O also for a stationary wheel (u 1 - u2 - 0). The

mWaimum value of 1. corresponds to (1c,1•)

It in readily seen that in the conoidered case

C-24,--=-0, or C.,,O (,• 0).

From the triangles of speeds it may be concluded, that in this connection the

exit losses are minimal, since at cu2 - 0 c,-•c,,.

9-3. ftiations for Calculating the Distribution of Flow
Parameters along a Radius within the Scope of Flow Theory'.

We now consider the flow of gas through an axial turbomachine stage. 1* select

three control sections: 0-0--before guide row, 1-1-between guide and moving rows,

and 2-2-after moving row.

We shall find the distribution of flow parameters along radius in the two

control sections (1-i and 2-2), if there are known: the distribution of pLrameters

in section 0-0, pressure of gas on root or average radius of section 2-2, ;•eometric

dimensions of stabge, number of rotation:; of turbine rotor and the aerodynavic

characterlstics of the rows.

*uestions dinnussed in this section have been worked out in collabo3i-tion
with G. S. Samoylovich.
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Fig. 9-9. Diagram of flow part of
stage with long blades.

By considering difficulties connected with an investigation of a three-

dimensional flow of a compressible fluid, it is possible in first approximation

to consider a simplified axially symmetric diagram of flow in a turbomachine stage,

Thus,, if it in assumed that the flow in the stage is steady and axially sym-

metric (o/di 0), while the radial components of the speed (c, == cv) and also their

derivatives f• a-•; O ; -ow are extremely small, then equations (l-17a) and

(9-1) are simplified and acquire the form (R=0=" 0):
idp , des .;

d . P a dz (9-43)
Le, I dp

C z----- w- I

+w +(irr - 2wv)= -1 djU; dw 0
~~~~d dzr2, ,p ,i,
_ '". ", oJ(9-44)

'di I
The first equation. (9-43) expresses the condition of radial equilibrium of

a particle of gas, with which centrifugal forces on any of the coaxial cylindrical

surfaces are balanced by forces of static pressure of gas. Thus, according to

designations in Fig. 9-9 for a unit of length of the cleadance (section I-i) it

is possible to write out: 2ardpj=-2..rdrpjc2 .Ur and to obtain from it the first

equation (9-43).

The second equation (9-43) expresses condition of invariablility of au along

the axis of stage. From the third equation there is readily pbtained dc./dz=O

i i II



at dp/dz=O, i.e. if pressure along the axis does not change, then the axial

components of the speed also remain constant.

The flow conforms with the adopted assumptions to a maximum degree in control

sections 1-1 and 2-2; the motion in the intervane channels is not subject to

such simplified law-governed principles.

We introduce in addition a number of simplifications. We shall disregard

periodic non-stationariness of the flow, caused by the rotation of rotor wheel

or, more precisely, we believe that a consideration of averaged speeds by time

also introduces no significant error. We assume also that after a rearrangement

the flow in control sections moves along cylindrical surfaces (i.e. radius of

curvature of meridian section of surface of flow R in Fig. 9-9 is fairly large).

We assume the an external and an internal heat exchange is lacking and the rows

of the stage are flowed around continuously.

We shall consider the flow after the guide row-. We shall use the simplified

equation of radial equilibrium (9-43), after writing it out in the following form:

for the section 0-0
dp os a. 

(9-43a)

* for section 1-1
! dr r_ (9-43b)

where p,, P,'Pt, P1, cO, (t, C, a, are the pressures, densities, speeds and angles

of flow before and after the guide row.

We assume that the function al,-at(r) is known. The form of this function

is determined by the law of torque of guide vunes. It is obvious that a flow of

gas has to satisry equations of energy and continuity. For each elementar.' annular

stream, flowing through guide row, equation of energy can be written out :,n such

a form:

+,4r, (19-45)
•+"
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where i•--enthalpy of stagnation in clearance;

Slitt Olt Jlt if--are the speeds and enthalpy of gas at the termination of the

isentropic and actual processes of expansion in the guide row;

%,-is the efficiency of the guide row (approximately determined as

I,-?I'. ).

We shall differentiate equation (9-45) with respect to the radius r:
dj,' dtill j 2,',,d€, ~d,' , ,jd-•'-_ •\-iý-= ; (9-46)

The derivative - describes the change in enthalpy of flow in the clearancedr

after guide row along the radius and, as is known, can be written as:
dia -- 0 , .I.dp (9-47)
d2 Tit dr ý= 1, dr "

Here pFl is the density of gas at the termination of isentropic expansion in

guide row; P, is the density of the gas at the termination of actual expansion en

the presence of losses).

The ratio of the densities can be expressed by the formula

pi- tt --- " •(9-48)

where lit _--¢a,,, is the theoretical dimensionless speed after the guide row.

Consequently, the derivative

dill, I dp,
FV=", ff •

or taking into account (9-43b)

Olt 7 f, C2112(9-49)

By substituting (9-49) in equation of energy (9-46), we obtain a differential

equation of distribution of absolute velocities along the radius in the clearance:
,d] de f, t ostd I dvj I ll'

- . r 2- dr 2hId-.'; , Wo (9-50)

where h,- c1 /21, is the available thermal differential in guide row in a given

section along the radius.

Integrating equation (9-50), we find:

IA Cos I I I I di -51

C&z=Kexp[f(!'" Id~I dr 1(95)
J Idr 2h.,dr J
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where KX is a constant, corresponding to initial javerage or root) section.

Equation (9-51)with-in the scope of the considered flow problom is the most

general.

From (9-48) it follows that at subsonic speods and moderate losses in the

guide row the ratio of the densities ej/1Pt 1.s close to unity. Calculations make

it possible to establish that range of values of AU and ij in which it is possible

to take -=Y, . Without significant error, such a simplification is admissible at

lot < 1.

At supersonic speeds function 7, should be retained in equation (9-50). However,

in certain cases it is possible to use simplified relationships .(1111 ;,),

and with a slight change in 1,, and 1, along radius Y, is assumed for each sector

as constant. ecalling that 4. depends on A and qj, it must be concluded that

in an accurate calculation of a stage at supersonic speeds, the method of successive

approximations becomes inevitable.

It is necessary to emphasise also that the effect of compressibility indirectly

is considered in equation (9-51) by the functions % and .1. Depending upon the N1

number the losses and the angle of exit of guide row vary. Consequently, the form

of the functions %(r) and %,(r) depends on M1 ; according to (9-51) with a change

of these functions also the character of distribution of absolute velocities c1 (r)

in the clearance varies.

It is necessary also to note that equations (9-50) and (9-51) are valid for

any law of torque.

Let us turn now to calculating the flow after the moving row. Under the

above made assumptions, condition of radial equilibrium in section 2-2 in eapressed

by the first equation (9-4):

IdA U2a + U~v U (W.COcost*,.0u52)

where px and Pa are the pressure and density, and c, and 2, are the speed •id

anglo of flow after moving blades in the absolute motion; u is the peripherLi speed
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on current radius r; 02=%(r) in the angle of exit in the relative motion

which is a given function of the radius; w2 is the relative speed after the moving

rowe

Assume further that the radial dislocation of the flow during the transition

from control section 1-1 into the control section 2-2 will be small (u P u2). Then

the equation of energy for the relative flow can be presented in the well-kncown form:

where w is the relative velocity at entry to moving row;

i is the enthalpy of gas before moving row;,3.I
v6 is the efficiency of moving row ( ', • ?', );

i2t is the enthalpy of gas after a moving row in an isentropic process.

The theoretical and actual speeds after the row are associated by the relationship

It is obvious that i2t =' i2t (r) and w27w2 (r) are the functions being sought

and ,, =,(r) and w. = wl(r) can be considered as the given functions of radius r.

The enthalpy of the flow after the guide row is determined by the equation of

energy: ell

After substituting i1 in (9-53) we find:

After differentiating the equation of energy, we obtain (we assume di'/dr 0):
1 2 0

Is Jr 2j, de, dr 2~.' (9-54)
We substitute in equation (9-54)

C'- w, ý =2ticcos.,- u (9..55)
We use the equation of radial equilibrium

dill Pg I dp3  (w,cos
i"--•" j;"Y". ....... . . (9-56)

where PUg
S °P =



Equations (9-54), (9-55) and (9-56) we solve in coamono After certain simpli-

* fications we obtain the sought differential equation:

Ti, +(., ^ (9-57I

24 IUCsW+r d

Equation (9-57) is nonlinear. It is linearized only in the particular case,

when d(cl r)/dr - 0.

Integrating (9-57) in this case, i.e. taking into account 0-h- -

we = KS x f w, ( o, r , ir .dr_ Y12,% co, P,) dr,[F o , .(9-58)

where K2 is a constant, determinate for the initial (average or root) section.

The condition d(cu1 r)/dr - 0 is satisfied strictly with a torque of the stage

on method of constant circulation*. However, as experience shows, this condition

is realized approximately and in a number of other practically important cases.

The constant K and K in equations (9-5i) and (9-58) are determined if there
1 2

are known the speeds ca and w. in any section according to height of blades. This

problem is solved by using the equation of continuity for sections 1-1 and 2-2:
f

0)=.=2*ga.cp.e1 q,sin x;dr; (9-59)

O= 2rga.,,p,, S" 4,sin ý,dr. (9-60)

The function x,, appearing in equation (9-58) in simplified solutions may

be assumed equal to Xw - conat for the entire stage or for individual annular flows**.

It must be also noted that the differential equation (9-57) for motionless

moving wheel (o().o) transforms to equation (9-50).

9-4. Calculation of Flow in a Sta~e with Long

Blades of Constant Profile.

We now consider a stage with an axial flow of gas, assuming that tie flow

*3Se %~c. 9-5.

**The flow of gas in the stage after the guide and moving rows is whir)Ed, i.e.
it ha& a nonuniform field of speeds both in the absolute, and also in the relative
motlnn., As it was shown in Sec. 5-16, in such flow the field of total eneroy will
be iionuniform.
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at entry to guide row has a uniform field of speeds. We pose the following problem:

to establish distribution of paraL-aters in the clearance and after moving row

along the radius, if the blades have a constant profile by height. The solution

of this problem aliows, in addition, obtaining initial data for calculating a stage

with blades of constant profile by the aerodynamic characteristics of the rows and

may be used for determining that limiting state of radinting rows at which it is

possible to use a blade of constant profile.

The calculation of stages with blades of constant profile can be made by

assuming as constant the angles along the radius a, and p2. A more accurate method

of calculating discussed below consists in the fact that the angles u, and p2

are given as functions of the radius r . This method is expediently used in those

cases when the fanwise arrangement of the stages is found to be significant.

Numerous experiments show that the angle a, can be expressed depending

on relative spacing or radius by the formula 0
• .,,,,', ,,+ -. ,j- (9 -. (9-61)

where
A NI -riBMIS -74-O.,,alm '.

, are the angles of flow exit in the apex and in root sections respectively;

r- r/rk; rk is the radius of root section; r is the radius of flow section;

2 +h

After substituting (9-61) in equation (9-50) and integrating the latter we obtain:

-. ., .S-;' f 0 (9-62)
*im Vll = 1•-•l'

here

!

r+ •,,), 4. O •,_ -. *;
1+nj (r

Er,n

•: • -,-•-r;(9-63)
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For determination of speed c1 it is necessary to know the magnitudo of clk

in the root section. For this purpose we shall transfer the equation of continuity

(9-59), after writing it out for sections 0-0 and 1-1:

'1

where e,. 0,.Iare the axial components of the speed in sections 0-0 and 1-1;

.• P,/e is the relative density in the clearance.

The function cal in equation (9-64) can be determined by the formula

or approximately p •

where a1 i3 taken according to formula (9-61).

The above-presented relationships are valid, if the flow in clearance is subsonic.

With mixed flows in the clearance, when in lower part of stage (in root sections)

ac> a%1, formula (9-62) is not applicable. In this case it is necessary to consider

the deflection of flow in an oblique section of the guide row.

let us turn now to calculating the flow after the stage. We shall use the /
fundamental equation (9-57) and will integrate it at is const and d(c uU) A 0

for the assumed law of change in angles along the radius
A gin ~

sin h a" sIn 12 + ------ (e--I)(r--I).

As a result of the integration we find the approximate expression

(9-66)

Here W2k id the value of w2 in root. section;

Sis the angle of vector w2 k;4p- (nm - 6l (9 ,,
I t

With the known vAlues 0'J there is readily determined the available thermal2I
differential in the stage.

By means of the derived equations, it is possiblo to calculate the 4istribution

of" parameters along radius in clearance and after stage with blade of coi•tawit profile.

inli FGT1,I = -..



The available thermal differential in the guide row according to (9.-62) will

be: LAvg j _

"., . 7 1- !• '.(9-67)

ke find change in reaction stage along the radius:

-A*, *0, 0101 Ron1

hon,

where h is the stage of reaction in the root section.

After using (9-67), we obtain:

, -. , -(9-68)

where He

Hence there can be obtained an approximate formula for determining the reaction

on average diameter of a stage with nontwisted blades, by proceeding from the given

value eK in the initial--root-section. Noting that -7m • eje - I and assuming

b1 s 0, from formula (9-68) we obtain:

lie (9-69)

Formula (9-69) has a limited area of application. It is obvious that it is

valid for relatively large 9, since only in this case difference of e, for the

vertex and for the root is small and it is possible to assume b1 : 0.

Minimum degree of reaction in mean section can be determined, by assuming that

in the root section g'0o. Then, from (9-69) we obtain:

or approximately (b1s;: 0)

The change of work on rim along radius can be found by the formula:

E -9 _ go, + CM

where c,3 -- wg,;,€o, 16- U.

The function c,,n(7) also is known. Consequently, magnitude 1 (r) is

determined.



The field of axial components of the speeds after the stage is calculated by

the formulas. Cae 2 4= W.2rAAM= (c,,2 + u) Is

In cunclusion we note that the initial formula for the reaction stage (9-68)

makes it possible to determine difference in p at vertex and at root of blade.

Since - 0+1

then after substituting in (9-68) we obtain:

+ t,--T. ( . 1,,\n -?

where p, is the stage of reaction at vertex.

?or rough calvulations it is possible to recomeond the formula

T~j, ~~S+1)(9-70)

Using the obtained relationships, it is possible to anaye the variation

of parameters along radius in clearance and after stage and to evaluate additional

louses, appearing in stage with blade of constant profile.

* i*~** -IZ

Fig. 9-10. Comparison between experimental and cal-
culated values of reaction stage in different sections
along radius of stage with blades of constant profile;

.- .73,- 0.65
MT: a) Calculation; b) Experiment; c) Root section.

Results of corresponding calculations show that additional losses in the stage

with nontwisted blades are caused by an increase of exit losses, by the change of

angle of entry of flow into moving row, and also by change of work being yielded along

the radius. After the stage the flow is vortioal; a levelling-off of the field of

speeds is accompanied by lomsss of kinetic enorgies, which must be include I in the
u 63



total balance of losses of the stage.

Results of calculations by the proposed method satisfactorily agree with the

experimental data.

Detailed experimental investigations of the flow in the clearance and after a

stage with cylindrica" .Ades were made at the Moscow Power-Engineering Institute

(MEI) at 0 - d/l - 7 .;. The calculation of the experimental stages was made on

basis of the method of approximation discussed above. Corresponding curves of the

change of reaction along radius are presented in Fig. 9-10. The comparison shows

satisfactory convergence of the experimental and calculated values of the reaction.

The experimental and calculated values of the angles, pressures and speeds also

satisfactorily agree.

In conclusion, we mention that at large E the change in the angles a, and

p2 along the radius is small. /

The calculation of the speeds a1 and w2 in such stages can be made by formulas,,

which readily are obtained from the fundamental equations (9-50) and (9-57) under

the following assumptions: q, m const; q2 - conat; a, --const and '2 "onst.

9-5. Certain Methods of Profiling Long Bladee of Stages
with an Axial Flow of Gas

Above-discussed method of calculating stages with blades of constant profile

makes it possible to evaluate additional losses of the stages, caused by a variation

of the parameters and angles of flow along radius in clearance and also by an increase

of exit losses.

Results of such calculation are presented in Fig. 9-11. Here there are given

curves, establishing additional losses in a stage with bla.des of constant profile

depending on 9 - d/l. In additionin the graphs there have been plotted the

experimental values of supplemental losses Aq.,. At < t10 the supplemental

losses exceed 1%. Consequently, in such stages it is necessary in a special manner to

organise the flow, assuring minimal losses of enorgy. For this purpose the blades

r r i



of the guide and moving rows are made twisted (helical) with a profile variable with

* height.

The twist of the blades can be realized by different methods. Initial differ-

ential equation of the distribution of speeds in the clearance (9-50) has infinite

number of solutions. In accordance with this the number of methods of twisting

the blades theoretically can be infinitely large. However, only a insignificant

part of these methods corresponds to conditions of rational arrangement of flow in

stage of turbine. For this reason, and also remembering that equation (9-50) is

approximate, one should develop those methods of profiling which are constructed

on clear physical premises.

In practice of turbine construction, the following are the most widely adopted

methods of arranging flow in clearance: a) constant circulation of speed with a

uniform field of axial speeds ('cMr= const); b) constant direction of

.9 A%3a~~kiJ I
9~~~ 1 Vi if W1 12 -to

Fig. 9-11. Decrease of stage efficiency from
nontwisting of blades depending on e - d/l;
a n c parison between the calculated and ex-
perimental values A*%.
KEY: a) According to experiments of b) V. G.
TyrMshkin; c) A. M. Zavadovskiy; d) I. I. Kirillov.

absolute flow along radiua a, const); c) special selected law of change of

direction of absolute flow C a,=f(r) ), including guide vanes of constant profile.

The arrangement of flow after moving blade is realized on the assumpticon: a)

of a uniform field of absliute velocities; b) of the constancy of work, beirg,

-* developed by flow in different sections along radius; c) of the constancy oJ avail-

able thermal differentia]. along the radius.

565



The number of combinations of awy of the enumerated methods of 'arranging the

flow in clearance and after the stage is 3lmited by the condition of continuity,

associating the flcw in these sections.

We shall conisider as an example the isentropic flow of gpas in a-stage with a

uniform field of axial speeds in clearance and after stage (method of constant

circulation of speed).

In this case, the coefficients 1~x~l, dio xw 0 and equation (9-50) acquires

the simple form: (9-50)

Since

eda,-=- ritcdcl, +,c, dc,,

and according to the adopted assumption c.l const, then equation (9-50a) is

transformed to the form: dell dr
, 0 -

Integrating this equation, we obtain:

Coo r =coast

The latter condition expresses the constancy of circulation of speed around

guide row. Actually, in the simplest case of axial entry into guide row (ae, O)

circulation of speed is equal to:
2wr

--' t(c , . , ) ..= I . • --- c,, - const,

where s-number of blades in the row.

The initiator of the considered method is N. Ye. Zhukovskiy. As early as 1912

in investigating propellers N. Ye. Zhukovskiy showed that axial speeds are constant

in a radial direction, if change of the peripheral components of the speed corre-

sponds to the law of constancy of circulation. It is well-known that propellers,

and later also fans, constructed according to vortex theory by N. Ye. Zhukovskiy,

were distinguished by their great economy. For calculating long blades of steam and

gas turbines, this method was for the first time applied by V. V Uvarov.

By means of equation (9-50a) there is readily .C£und the distribution of the

absolute velocitieis in clearance: I +._[l. _.. I)"

I I I I, I I I I I I I +I I I I I



where- const.

Cer , -- •; ,-oi,,
m31

The change in reaction along radius is established by means of the evident

relationships 4I ,

or

(9-71)

In accordance with condition cu r - const there can be found the change

of angles of absolute velocity along radius in the form:

W -- It-.

The twist of blades on the basis of the condition of constancy of circulation

of speed can be reaslzed by taking into account the losses in rows.

For an adiabatic flow (taking into account losses) the calculated relationships,

obtained by means of integrating initial differential equations, are given in

Table 9-1.

For a flow with losses, as is evident from formulas presented in Table 9-1,

the conditions cur ,*const and cgl - conet are incompatible. Under the condition

of a uniform field of axial speeds in clearance the circulations of speed around

guide blades must be increased towards its vertex. If, as the basis of profiling

of stage there is assimed the condition of constancy of circulation of speed, then

the axial speeds in clearance also increase somewhat towards the vertex.

The adiabatic flow in clearance at il, - const and a,- const is subject to

equation, obtainable by the integration of (9-50), in following form:

Cone~quently, the available thermal differential in guide row will be:

The ratio of speeds varies along the radius in accordance with formula
ba
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Table 9-1

A) B) PIC'WTNI HSH "Vyj

t Ij ( I

TO- -- + 114 CUP -a

C__________
-I. ~i

A) Magnitude; B) Standard working forula•.

where x.k - u.,Cl is the ratio of speeds for root section.

The angle of relative flow

',' co. ,~I'l,-x';+"''

It must be emphasized that the realization of method of twist at a, const

results in guide vanes of variable profile by height, since with small e the

spacing of the blades and the speed a, along radius varies significantly. Consequently

in order to realise ,he condition a, - const, it il necessary to change the ad-

Juating angle of profile %adjjie.,'to make the blade twisted. At high speeds it

is necessary also to consider influence of compressibility on the mean angle after

row which also results in the necessity of twisting the guide vanes.

For a large number of stages it seems possible to make the guide vanes without

twists. The calculation of the guide rows is made by formulas, presented in Sec.

9-4. By means of these relationships there are calculated parameters oa flow in

clearance.
p.n arbj



The calculation of moving blades both at a. -const, and also at aa=If(r) r)

*is made by proceeding from conditions adopted after the stage. As it has been

shown, there may be assumed a condition of without a swirl of flow at exit (a u2O),

of constancy of work along radius (Lu - const) and others..

The calculation of a stage with a flow, nearly cylindrical, it is possible

to realize, by dividing the flow into a number of elementary annular flows. Within

limits of each flow it is possible to assume the problem one-dimensional and to use

ordinary calculation procedure . The twist of a guide vane, in general, can be

selected any: a, - const; cul r const; ut-I(r)i. In this cornection, naturally,

for determining parameters in the clearance it is possible to one of the particular

.solutions (9-50). After determining parameters in clearance, we write out the

equation of continuity for each flow in the control sections 1-1 and 2-2:

Al

where 4O0 is the flow of steam through an elementary stream;

P1, and p• are the densities attermination of isentropic expansion in guide

and moving rows;

cit, w2t -e the theoretical exit velocities of the flow;

f, and I,- are areas of exit sections within the limits of one elementary flow;

P,, Ps are coefficients in a given annular section of the guide and moving

rows,

From equation of continuity and triangles of speeds we determine the ;arameters,

necessary for designing a moving row. The total flow of gas through the stage G is

equal to the sum of flows through all the elementary flows. The total efficiency

of the stage is found on the basis of the efficiency of the elementary flou3 as

neutraliaed along the flow.

With such a calculation method, the flow factors 1, and p, and coefficients
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of speed T and "Y should be assumed variable, depending on geometric and regime

parameters in considered sections of the rows. The described method of calculation

in very simple and gives reliable results.

The construction of guide and moving blades is realized by design data of the

twist. From the calculated values of Mi,(r) and a,(r) the profiles in the root,

middle and upper sections of the guide vanes are selected. With large heat differ-

entials in the stage, in root sections M01> 1, and in peripheral Me1< 1. Corre-

spondingly the root sections will form profiles of group C (with reverse concavity

in oblique section and a small expansion of channel), middle sections-profiles of

group B (rectilinear sectors of back edge in oblIque section), and the upper-

profiles of group A (convex back edge in oblique section). Analgously there is

constructed a moving blade, for which the following parameters serve as the initial$

, (r),- * (r), AIU (r) and P, (r). In the construction it is desirable to select

spacings and adjusting angles of profiles in a range of optimum values.

The above-considered methods of profiling give virtually a coincident character

in the change of reaction along radius which directly ensues from the approximate

equation (9-50).

Certain differences are ascertained in the distribution of angles of absolute

and relative flows ul and l,, and also axirl components of the speed.

A comparison of three methods of twist ( cr - conet, a, - ) nst and for

cylindrical flow pc 1i - const) is presented in Fig. 9-12. A somewhat larger

twist of moving row is given by the method a, - const. In this connection the guide

vanes prove to be the least twisted. For method of profiling c. 1r -, const, the

twist of the moving blades decreases and of the guide blade-increases. Intermediate

results are obtained for cylindrical flow, corresponding to regularities of flow,

arranged according to the method c.,r - const at P& -const.

Experiments show that stages, profiled by the indicated methods, have virtually

an identical effectiveness. A further increase in the efficiency obviously may be

assured by selecting a rational distribution of the reaction along radius. Such a



wdw - - w

4 /- - A...

O, 4 z42 At 41 F l

Fig. 9-12. Comparison of certain methods of twists
of blades.

condition corresponds to law p(P), with which radial pressure gradients in root

sections will be minimal.

9-6. AxialeStage with a Small Variation of the
Reaction along Radius

The possibility of realizing a turbomachine stage with a small change of

reaction along the radius is of great practical interest. In a turbine stage an

equalixing of the reaction resukts in a more uniform field of speeds in clearance,

to decrease in difference of angles at entry of flow p, in upper and root sections,

to a lowering of losase from leaks, to a decrease of axial stresses et cetera.

For a compressor stage with a reaction p - 0.5 owing to the equalizing of the

field of speeds by height, there may be displaced the maximum limit with respect

to 1 number, higher peripheral speeds and, consequently, a larger coefficient of

pressure head wit.h the maintenance of a high economy of the stage.

Pey stages of turbines with low heights of blades ( <0,8 and E:;13) the

equalizing of the reaction can be realized by the use of meridional prof.-ling of

channtis in guide row by height.

The condition of eqiiality of centrifugal forces, acting within chanriel

on an element of the mass of the peripheral and axial components of the ipeed, i.e.

the corMition of constancy of statio pressure of channel by height can bc

[ II Ilai II i III n I & 7 1



a 0.

Fsi.9-3 Diagram= or annular' row or guide
profiles with oblique edges and a meridional
profiling.KZY• a) Direction of low of gas; b) Exlit

edge o£ blade.

presented as: • •F

" •'-"(9-72)

Here R is radius of curvature of upper contour in the meridional plane; rk

is the radius of root section (Fig. 9-13).

S.....Fro,, (9-72) we find:

r

As has been indicated (Sec. 8.-8), the use of uwridional profiling in stage

vith low heights of blades mak#'s it possible not only to decrease the difference

between reactions, but also significantly to decrease louses in the guide rows.

In Fig. 9-14 there are illustrated the results of tests of two stagu es (T .. O: 16)

with ourvilinear and cylindrical contours of the upper band. It is evident that

the stage with a meridional profiling has a higher effi..oncy (by 1.--2%), and

the difference beDien the ractions Ap.=p. p decreases moofe than threefold

(fr-m 16 to 5%).

From a staie with a n*I0 meridional profiling it is difftcult to attain

As has bee ind ca e (Sec. 8 -I th u~ f m r d o a rof ln in stags
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Fig* 9-14. The dependence of the efficiency ofU and reaction on u/c for a stage with meri-dional profiling (KD-2-2RM) and for a stage withcylindrical contours (KD-2-2A) 0 - 16; "7, . 0.5significant equalizing of the reaction without a significant increase of losses in

guide row.

Fig. 9-15. Variation of difference of reactionAp of profile and total losses in rows as afunction of slope angle of blades ( (9 8.5;I -10.; as - 5 ).ilY: a) Calculation.
For the limuting values 2,5<0< for the purpose of lowering gradient ofstatic pressure along radius, it is expedient to use slope of blades in the radial

plane. Actually, from equation of radial equilibrium, written out takiig into



account forces of the action of blades on flow,

I, os,, -H ', (9-7,3) 0
p- -"V r--- '--- -

(where Fr is the radial component of the force of the action of blades on the flow)

it is evident that at Fr < 0 (slope of blades along the flow, Fig. 9-12) the pressure

gradient is less than with a radial arrangement of the blades. Physically this

means that on element of gas there acts a force, whose direction is opposite to the

direction of the centrifugal force. Consequently, in this case, there is decreased

difference between static pressures which assure the equilibrium of the gas element

decreases .*

Thus, slope of the guide vanes in plane of rotation can change the distribution

of static pressure in the clearance and tV.. distribution of the reaction along the

radius.

In Fig. 9-15 there are shown results of tests of four annular row$ with

different angles of ,slope Y' 200; 00; -- 8°; -201, made at the Moscow-Power

Engineering Institu/e (HSI). As can be seen from the graph, with an increase of

slope angle of blade along the flow difference between reactions in peripheral and

root sections significantly decreases; for E-8, apO can be attained at y;1254

In the same graph there have been plotted the profile and total 0osses in the rows.

Within limits of veriations of the slope angle V from -8 to +S profile

losses virtually do not change and amount to 2-2.5%. At vy +20* and V---20'

the profile losses increase to 3%. This result is explained by the distortion

of shape of vane channels with a large slope of the blades.

The total losses in the rows remain virtually constant within limits of varying

the angle V from -- 8 to +200. An intensitve increase of lossas is observed with

slope angles of -- 8>y>V.+200. Graphs of the variation of losses by height of

rows (Fig. 9-16) show that for negative slope angles the losses increase in the

*An investigation of stages with oblique blades was made by Yu. I. Mityushkin
(Leningrad Metalworking Plant) and G. A. Filippov (Moscow Power-Engineering Institute).
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root sections, where there appears a separation of the flow. For rows with a slope

of the blades along the flows when there is realized a compression of the flow in

root sections, the losses increase in the peripheral sections.

Experiments have shown that with a simultaneous introduction of meridional

profiling of the upper contour of row and with the slope of blades it is possible

to decrease losses in upper sections (y>O). In this connection, both factors,

the slope of blades along the flow and the profiling of upper contour make it

possIble to lower sharply differences between reactions Ap =;-p- p--. .

An approximate formula for determining the reaction in stage with different

slope angles of blades v can be obtained by means of a common solution of Nquations

of momentum and of radial equilibrium of cylindrical flow (9-73). The force of the

effect of blades on the flow is determined in terms of the peripheral component

041
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hig. 9-16. Character of change of
losses along height of row at various
ar4les of inclination of blades (e 8 .V; L, I I); , 15).
KU.- a) Root section.

tr the equ-.tion (c fO):

r)ra
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where P im the peripheral component of force of effect of blades un the flovr.

After asomwing a linear law of the change in c across width of row for a

middle line of channel cu = Xeu1/B, we obtain:

Subetituting F in equation (9-73), we find:
r __--dr

From the latter equation jointly with equation of energy we obtain:
dc,¢ uini•te$ s i1 t dr
±e, s~j~cosA dr -cos'cza, .

After integrating this equation for the case conat, we obtain the distribu-

tion of speeds by height of blades:

-54- l 1Mt 4 X sin cCos a,(r, - rK,tit,. Y, e L -- r'-AA -) " (9-74)-

The reaction in arbitrary section of clearance is calculated by the formula

2sn , s (9-75)

The difference between reactions at p6 0 and b P 1.5B (b is the chord of

profile ) rI [ ) e ( 3t i(,'T ) 1 2'-'og i o

eg 2m .UO -- Y--"s ,I- (9-76)

The obtained formulas give values somewhat too high for the difference between

reactions which is connected basically with the deflection of flow in clearance

of stage from coaxial, by the presence of radial overflows of gas in the boundary

layer of blades, by leaks in the stage, by the effect of moving wheel. The error

of calculation is explained also by the assumed approximate law of variation of cU

along axis of channel et cetera.

The influence of the enumerated factors is considered the basis of experimental

data introduced by the coefficient A = 0.65 in formula (9-76).

The calculation of the reaction in stage with slope of blades along flow and

meridional profiling of upper contour is realized by the formulap I-(I~ 'u-- (|.. + , 1i,., m[ )(' 6o1o.,.,

IfIXc sp[ lsin ,Cos 
((r-77
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obtained by taking into account the influence of curvature of upper contour on the

*distribution of the speeds along the radius in the clearance.

Ebperience confirms the satisfactory accuracy of formula (9-77) at 0>-6.

For stages with small e)<. and supercritical heat differentials the application

of slope of blades also is expedient. Actually, with a significant degree of fanwise

arrangement of blades of the flow part (Fig. 9-17) the compress-ion of flow makes it

possible to improve the flow around the root sections; the flow around the upper

sections is virtually constant since the slope angle 7. at, the periphery is much

smaller than at the root.* For example, f or a stage with 9 = 2,6 P and U.. ' the

slope at vertex is To - 5041 and at the root "g 140. The decrease of reaction

in the upper sections and correspondingly decrease of angle at entry of flow for

the moving blades ý, will result in a decrease of twist of moving blade.

The redistribution of the heat differential between guide and working rows and

decrease of angle , , in the peripheral sections, caused by the slope of blades along

the flow, facilitates the profiling of upper sections of moving rows at supersonic

speeds.

Influence of the slope of guide vanes in the stage e - 2.6 and s 0.27

on the distribution of parameters along radius is shown in Fig. 9-17. With a slope

in middle section T.=---+ 3 the reaction in upper section lowered from 75 to 56%,

angle at entry of flow ., decreased from 155* to 1270. The MHl number increased

at vertex of blade to 0.9, and the MW number decreased to M V 1.08.

The latter turbine stages frequently must be realized with conical contours

(Fig. 9-12). The presence of conicity results in a decrease of the reaction

in stage.

For a conical guide row, the change in reaction along the radius can De

determined approximately by the formula

0Lp -- .(I Coo'%

where ,-1-sin'z,.r; is the coefficient, which considers the effect of conicity;

it the angle of conicity at vertex.
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Fig. 9-17. Variation of parameters by height
of blades ( e - 2.6; -, 0.27).
-- with slope of edges: - radial edges.
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CHAPTER 10

METHODS OF EXPERIMENTAL INVESTIGATION OF GAS FLOWS
AND BLADING OF TURBOMACHINES

10-1. ftoerimental Stands For Investigation

of BladinAs of Turbomachines

Problems of experimental inve.Ligation of the blading of turbomachines can

be divided into three groups. In, the first group are included questions connected

with the investigation of the structure of flow in separate elements of the stage,

*• considered as isolated and, in the first place, in the guide row and moving row.

The second group of problems consists of a differentiated study of the physical

phenomena occurring in the stage.

The third group of problems reduces to the determination of the experimental

coefficients necessary for thermal design of the turbomachine and for the explanation

of the dependence of •,hese coefficients on the basic structural geometrical and

regime parameters of the stage.

Main requirements for experiment under laboratory conditions are formulated

by theory of analogy. In practice, not all of these requirements can be realized

with an identical degree of accuracy, since actual processes in the turbomsahine

are distinguished by great complexity. Therefore, for the experimental set&p, o-e

should establish the most important characteristics of the process in each Lndividual

case, disregarding its secondary characteristics. Correct solution of this problem

* determines the direction and method of the experiment and also the theoreti-,il and

practical value of the results of the investigation, If the main goal of thoi
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experiment is the obtaining of integral characteristics of the stage, then it is

obvious that in the model conditions there must be reproduced all of the most

essential characteristics of the process. Therefore experimental investigation of

the characteristics of the stage must be conducted on j eaecial experimental turbine

or axprimental compressor, allowing the establishment of reliable values of character-

istics and the study of the main properties of flow in the cascades.

The last problem, however, is difficult to solve in an experimental machine

since this requires the application of complicated special measuring equipment.

Therefore for detailed study of flow around cascades during the study of the

mechanism of formation and development of losses in individua~l3, considered caacadea,

it is necessary to resort also to other simpler methods of experiment, waiving cer-

tain requirements of the theory of similitude. It follows frosa this that along with

the use of an experimental turbomachine as the main method of investigation, it

is necessary to app"ly also the simpler and therefore more wide-spread methods of

test of stationary rows.

Investigations of elements of the blading of steam and gas turbines can be

carried out with water vapor or with air, and the diagram of the test stand depends

considerably on the applied working fluid. Investigations of elements of the com-

pressor are carried out, naturally, on air.

The fundamental diagram of the air experimental stand for the investigation of

bladings of turbines and compressors is presented in Fig. 10-1.

Air is compressed by compressor 2 and, passing through receiver 3, is purified

in filter 4. When necessary, the temperature of the air can be raised in Lhe air

pre-heater 5. This is especially important during the attainment in the investigated

row of high velocities when the temperature of the air abruptly drops, which causes

condensation of the water vapors, which are always in air.

With the cleaned and warmed up air are fed: experimental installations for

investigation of flat stationary rows 6 and for investigation of annular stationary

rows 7, the air experimental turbine 8, the installation operating on the principle
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of measurement of reactive stresses 10p wind tunnel 11 with optical inistruments 12

and the block~ 17 for test~s of ejectors, ducts, valves, aet.

The annular-wind tunnel 7 is designed so that, besides pnewnometric measurements,

it allows the measurement of torque and axial stress on the investigated row.

The air experimental turbine 8 with hydraulic or induction brake 9 is analogousl1y

designed.

Fig. 10-1. Fundamental diagram of an air
exprimental stand.
1-motor; 2-compressor; 3-receiver; 4-filter;
5-preheater;- 6 and 7-static installations;
8. 9-experimental turbine; 10-installation
for measurement of reactive stress; il-wind
tunnel; 12-optical installation; 1.3-refriger-
ator; 14-additional compressor; 15-filter; 16-
muffler; 17-stand for test of valves, ejectors,
etc.1 3.8-ejector; 19-tanks; 20 and 21-filter
and moisture aaiparator.



The wind tunnel is a necessary element of the stand and is designed for

calibration tests of different measuring instruments and necessary systematic

operations. On the plane installation 6 or in wind tunnel 11 are conducted experi-

ments with the application of the optical apparatus 12, The stand can work by the

opened, as well as by the closed diagram. The closed diagram, being the more

complicated, makes possible, however., the independent change of numbers H and Re,

i.e., allows the investigation separately of the influence of compressibility and

viscosity. For the setup of a number of experiments, this requirement is basic.

During the use of the open diagram air is ejected into the atmosphere through

the muffler 16. During operation by the closed diagram, air moves through the cooler

13 into the suction line of the compressor.

For creation in the closed circuit of the stand of increased pressure and com-

pensation of leaks through cracks and seals, the supplementary compressor 14 is

necessary with a pressure exceeding the maximum pressure in the suction duct of

the main compressor. If compressor 14 has sufficient compression ratio and efficiency,

thenfor a number of regimes, instead of the main compressor 2, compressor 14 and

ejector 18, can be usedfeeding the experimental installations with air at louvred

pressure.

lT case it is necessary to carry out an experiment requiring large flow rates

and high velocities, the tank set-up can be applied, consisting of compressor 14 and

a group of tanks 19. For a definite time the tanks 19 are filled by compressor 14

through filter 20 and moisture separator 21. Then air from the tanks is directed

through regulating valves into the experimental installation. Since during operation,

the pressure in the tanks will fall, for maintenance of the constant regime of the

experimental installation it is necessary to use automatically controlled valves.

Briefness of the action is the main shortcoming of the tank set-up.

The method of experiment with air at temperatures of the order of 50-1000 C
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is significantly more simple than with steam at temperatures of 250-3500 C.

This determined the wide application of air in laboratory investigations of bladings

0of turbomachines.

However, a number of problems connected with extended operation of experimental

installations with large flow rates and at high velocities require extzaordinarily

powerful and cumbersome compressor installations. Work connected with the invest-

igation of the last stages of condensation steam turbines can be conducted with

air only partially, and these problems in general cannot be solved on the air stand.

The optimum solution, giving the greatest possibility of conducting different

investigations of bladings of turbines with minimum expenditure of time and means,

is. the use of a composite steam-aLr stand, whose basic diagram is shown IAn Fig. 10-2.

The majority of installations of such a stand can operate on air as well as on

steam, which allows us to select the optimum type of working fluid for the given

experiment. The air circuit of the stand does not differ from the one presented

in Fig. 10-1. Use of steam allows us easily to obtain large flow rates and high

velocities, and to change independently the numbers M and Re; it also provides for

the conduction of all investigations connected with humidity. Steam moves through

the reducing-cooling installation 29 to the experimental installations of the stand,

passes through them and heads into the main condensor 21. The condensate by mnahs

of the condensate pump 24 moves into the measuring tank 25, and then into the

return line of the condensate of the heat and electric power plant.

The steam-air stand consists of an installation for the investigation of

annular stationary rows 7. the high-speed single-stage experimental axial turbine 8,

the two-shaft experimental turbine 14, intended basically for investigaticn of the

last stages, the experimental turbine for Investigation of radial-axial stages 20,

axial 26 and centrifugal 27 experimental compressors with steam turbine drive 28,

and the installation for testing of the plane cascades 6.

if necessary, in the steam-air stand ejector wind tunnels 18 and 19 can be

used, the air flow in which is created by a steam ejectors sucking in air from
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the atmosphere.

In the diagram of the stand is included block 17, allowing us to establish

for periodic tests different auxiliary components of tubines.

For drawing off of steam from seals of the experimental turbines the auxiliary

condensor 23 is used. Vacuum in the condensors is maintained by steam ejectors 22.

It is desirable to supply the exhaust ducts of turbines with throttling

mechanisms, allowing ui to raise the counterpressure after the rotor wheel to 3-5

atm (abs). For the majority of experiments a pressure of fresh steam of 5-7 atm (aba)

at a temperature of 2500-3500 C is sufficient.

The reducing-cooling installation must allow feeding of stands not only with

superheated steam of lowered parameters, but also with wet steam.

flf

Fig. 10-2. Basic diagram of steam-air stand of Moscow Power-Engineering
last. 1 and 2-motor and compressor; 3-receiver; 4-fi.lter; 5-pr.-
heater 6, 7, 10, ll, 18 and 19-wind tunnels; 9-load mechanisms;
8, 14 and 20-experimental tubines; 21 and 23-condensors; 22-ejectors;
24-pump; 25-maasuring tank; 26 and 27-experimental compressors; 28-
drive turbines; 29-reduction-cooling installation.

0
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10-2. Methods of Measurement of Parameters of the Workinq
Fluid Durin& the Investigation of Gas Flows

The basic parameters of the working fluid directly measured in the process of

experiment are: total stagnation pressure and temperature, static pressure, and

also the direction and magnitude of the vector of velocity. During investigation

of non-stationary phenomena, the frequency, amplitude and form of change of these

parameters with time are measured.

For measurement of pressures in flows various heads are applied.

Dimensions of the investigated cascades are usually small, especially during

tests at high velocities. Consequently, the dimensions of the head should be

minimum, so that perceptible distortion of the investigated field does not occur.

Significant nennuniformity of flow after the cascade also causes a maximum decrease

of the dimensions of the receiver and a change of its design in distinction from

widely known heads, which are applied for measurement in relatively uniform flows.

SWse will consider certain designs of heads.

Total stagnation pressure is measured by the heads, sohematically depicted in

Fig. 10-3. The perfection of the nozzle is characterized by the dimensionless

coefficients: A, -- Pa Pul

where K is the coefficient characterizing the sensitivity of the head to changepc

of the angle of incidence; #. is the coefficient characterizing the quality of

the receiver; p0 is the actual total stagnation pressure for an angle of incidence

6 - 0; p- is the measured stagnation pressure for given a # 0; pou is •he

wmeuured stagnation pressure at a - 0.

It is experimentally established that at a - 0 the coeffioient .,,, Ls

approximately identical for all forms of the heads presented in Fig. 10-3 Lnd is

*near to unity. Magnitude of K considerably depends on the form of the hoWi,

which is illustrated by the characteristics in Fig. 10-3.
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For measurement of stagnation pressuro nearw the waalls, where there are

significant gradients p,, micro.-heads are applied. For nmea.surements in bounded 0

region@, for example in gaps between the guide and moving apparatuses, heads ct

types f and & are applied. Nozzle _f is more useful at low velocities and is

distinguished from nozzls & only by lower rigidity.

For measurement of static pressure, the heads whose diagram and characteristics

are shown in Fig. 10-4 are applied. Heasurement of static pressure is difficult

due to the necessity of stricter orientation of the axis of the head in the direction

of the velocity vector of flow.

The sensitivity of the head to change of -the angle of incidence of the flow

and the quality of the receiver of static pressure are characterized by the

following dimensionless coefficients.:

usP& a nd -P
•,I- ane ' S .-I- P,-=,-,

where p4 is the pressure, shown by the instrument at the given angle of inoidence;

is the static pressure of undisturbed flow; pu is the measured pressure at a •0.

A'p*N

• I_ , ""'" I

Fig. 10-3. Heads for the measurement of stagnation pressure.
a-h are forms of receivers and results of calibration.
KEY: (a) receiver a.



Ioro measurement of static pressure in flow3 of subsonic velocity, the head

of typo b gives satisfactory results. The had consists of a pipe with a spherical

end; diameter d..- 0.9 to 1.2 nmn with two receiving apertures of diameter d -

0.2 to 0.3 mm. Measurements in gaps and other places accessible with difficulty

ED4W

4-

('eU'd •, yr , ,4.,, 1,,,

S ',,,[,

Fig. 10-4. Heads for the measurement of static ; ressure
in the flow a-f are forms of receivers and results of
calibration.

sometimes require the application of heads of the types c, d and e, distinguished

by large rigidity, smaller linear dimensions, but also by worse characteristics.

For measurements of static pressure at supersonic velocities the head i,

* which has a favorable characteristiclis applied. Independently of the design of

the head# its receiving apertures are conveniently located on the axis of r)tation.
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During total supersonic stagnation flow around the hoad a curved shock will

be formed. Assuming that the neutral flow line crosses an element of the normal

shock, it is possible to use already known equations for the determination of

Fig, 10-5. Curved shock before
a pitot head.

stagnation pressure if the dimensionless velocity of the incident flow M and

the static pressure p, (Fig. 10-5) are known.

Under the conditions of the experiment it is usually possible to measure p,

and the stagnation pressure behind the shock pc6 With help of the equations of

the normal shock, it in simple to find the connection between po2/P 2 and p2 /p 1,

and finally to obtain the dependence fort --'----.-!! , allowing the determinationF,, Fer, P,

of M (or A6):

p,~ h- I -__
r,.' , _ •' - ---. •

I(4012 - 2 (k -I)I '

Instead of direct calculations by this formula, it is convenient to use

tables of functions of the normal shock or the diagram of shocks.

For measurement of the direction of the velocity vector in gas flow, are

applied various designs of goniometrical heads: spherical, cylindrical, tubular

and wedge-shaped. The most convenient are the tubular and Wedge-shaped goniometrical

heads (Fig. 1o-6). Spherical and cylindrical heads cannot be recommended due to

the complexity of their manufacture, and calibration and significant errors durinrw
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measurements in nonuniform flow.

With the help of a tubular or wedge-shaped head, the direction of velocity

is determined by the difference of pressures which are measured on the surface of

the wedge at an identical distance from the edgo.

In flows of high subsonic and supersonic velocities, the heads of types I and b

hae an approximte.y identical characteristic. A head of type a_ has large linear

ej C)

A. t

4W. IN

Fig. 10-6. Heads for measurement of direction of the
velocity vector at a point; d is the result of calibration.
KEY: (a) axis of rotation; Th) m m of Hg.

dimensions, is less vibrationally stable, but is more accurate and in a smaller

stage disturbs flow near the point of measurement. A head of type b is more rigid

and compact, but does not allow measurements near tho walls confining the flow.

If the wedge ABC (Fig. 10-6,c) in located at an angle of incidence a to the

flow line, then the bow wave appearing at point B, at 1 > 1 will be asymotric

with respect to the axis of the wedge BM. Consequently, the pressure at p)int K

will be higher than at point KI. At 8>a6, instead of the shock DO, a iave of

rarefaction may appear. The difference of pressures pk - pk1 in this cano is

Oincreased still more. Since the initial orientation of the axis of this ho'o, is

known, then, turning the head until the pressures Pk and Pkl are equal, by I lie
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indicator, the direction of the velocity of flow is determined. It is desirable

that the angle of sharpness of the nozzle be less than the critical angle at which

the curved shock will be formed, considerably lowering the sensitivity of nozzle.

Measurement of the static temperature of the moving gas causes significant

difficulties. The stagnation temperature can be measured comparatively simply;

methods of its measurement are considered below.

There exists a large number of designs of thermal heads for measurement of

stagnation temperature based on one and the same principle: the stream of invest-

igated gas by one method or another is decelerated, and the thermally sensitive

element is placed in the zone of decelerated flow.

The stagnation temperature T0 is connected with the flow velocity and static

temperature T by the known relationship:

-.- T (I+ -2 - .t) + . Ac'

The thermoreceiver introduced into the region of decelerated flow, due to heat

exchange with its environment and incomplete deceleration, will have some

temperature T1 , bounded by the limits T<T4 <T and determined by the equation T -

T Ac' where r<l is the recovery factor of the thermoreceiver. MeasuringT, Tr+ri 5 ,Cc

temperature T and knowning from calibration tests the value of r. it is simple

to calculate the true stagnation temperature T by the formula
Ac'

To= -rT + •- Acs-, -r).

The principle requirements of the thermal head reduce to the following: 1)

the value of r should as near as possible to unity, since at r - 1, T - T; 2)

the value of r must remain constant in a range of numbers M and Re which is as wide

as possible; 3) overall dimensions of the thermal head must be minimum.

As a rule, a thermocouple serves as the sensitive element in the thermal head.

Lately semiconductor thermoelements (thermistors), which have higher sensitivity,

have received widespread use.

In Fig. 10-7 and 10-8 are presented several diagram and characteristics of

rZ ,



thermal heads,which are the most suitable for the conditions of experimental

* investigation of bladings of turbomachines. For investigation of temperature fields

after the stage it is possible to recomnend thermal heads of type A, which have very

stable characteristics. Such heads are insensitive to rake angle within the limits

S(100 to 12 0). For measurements in clearance spaces of turbomachine stagesp

the moat suitable in the thermal head of type h.

A somewhat improved modification of the transversely streamlined quick-response

head, which allows measurement at elevated pressures with full hermetic sealing,

is shown in Fig. l0-7,c. One electrode of this head is made in the form of a thin-

walled, for example copper, pipe of dimensions 1.1 x 0.8 =rs, inside of which, in a

porcelain tube, is inserted a second electrode.

After installation of the internal electrode, the end of the pipe is ground

and covered with a thin layer of electrolytic copper. The "Junction" of such

a thermocouple for a diameter of the internal electrode of the order of 0.05 mm

possesses insignificant inertia, and the thermoreceiver itself is very easily

sealed. In Fig. 10-8 are presented designs and characteristics of heads which are

applied at high supersonic velocities and significant temperatures. Good results

were shown by the nozzles of type a.

The Cae4si of the shield and the sensitive element of this head is made from

quarts, covered by layer of platinum, which significantly decreases convective and

radiant heat exchange at high values of To.

For measurement of the stagnation temperature in the boundary layer and in

flows with small free flow section, the thermal head c can succeasfullr be

applied; however, manufacture of a head with such small dimensions presenti, definite

difficulties.

During investigations in the region of elevated temperatures, where i, is

essential to consider radiant heat exchange, the thermal head d can be used, which

* is inse~nsitive to wash of flow within the limits of + 120 and is shielded by a

doable screen.
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For caqparatively large dimensions of the investigated field, it is convenient

to apply combined heads, which give simultaneously values of two or more parameters.

Several designs of such heads are shown in Fig. 10-9. The head a is used for

simultaneous measurement of total stagnation pressure and the direction of two-

dimensional subsonic flow.

The head b is widely used in the Moscow 'Power-Engineering Inst. during the

simultaneous measurement of total stagnation pressure and the direction of two-

dimensional and supersonic flows and is the most perfect of the heads of this type.

The comb-like head is convenient for the measurement of total stagnation pres-

sures in flows with small change of angles over the section.

The disk can be applied for simultaneous measurement of static pressure and

direction of two-dimensional flow. Heads % and k in Fig. 10-10 are used for the

simultaneous measurement of total stagnation pressure and static pressure.

Head Z, consisting of tubes of complete deceleration and a Venturi tube, is

insensitive to rake angle right up to 400-450, which makes it very convenient for

a number of experiments in which turning the heo4 for orientation of its axis is

difficult.

In Fig. l0-l0,d is represented a combined nozsle for the measurement of total

stagnation pressure and temperature, proposed by 1. Tauber.

Processes, proceeding in turbomachine stages are periodically non-steady-state.

Therefore a significant interest is presented by methods of measurement of the

parameters of non-steady gas flows.*

Since during the investigation of non-steady-state processes it is neoessaary

to be concerned with frequencies reaching thousands of cycles per second, lirect

measurement of the parameters by the usual instruments becomes impossibl.e.

*Below am considered only some of the developed methods of measureme,;i.i in
non-steady flows. Electrical circuits of the measuring devices, wiich are lescribed

* in applied special literature, arn beyond the scope of this book and are n,),
cons idered.
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Fig. 10-9. Combined heads for measurement of stagnat.ion pres-
sure, static pressure and direction of the velocity vector.

-- r

Fig. 10-10. Combined heads :ozr the measurement, of stagnation
presswre and static preesure.
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In this case special low-inertia heads are used, which uniquely convert the

measured parameter into a current or emf of a certain value. By the changqe

with time of the current or emf, the charge in the measured parameter is

determined.

At the basis of the design of a low-inertia nozzle with an electrical trans-

ducer there can be assumed various physical principles (change of resistawce,

capacitance, etc., as a function, for example, of pressure).

It is desirable, that the selected principle provide for the measurement of

as large a number of parameters as possible of lon-steady state flow.

For registering the form of the investigated process as accurately as possible,

the natural frequency of the transducer should exceed the maximum frequency of change

of the investigated parameter by at least an order of magnitude. Amplifying

equipment, usually applied jointly with the sensors must have a linear frequency

response.

Realimation of the amplifying and registering parts of the measuring install-

ation with such requiremnts presents special difficulties, and the high natural

frequency of the system of the transducer is attained with difficulty.

The head must have a sensitivity, as high as possible, linearity of character-

istios in the region of measurement and time stabilitylit must also allow temperature

compensation and have minimum over-all dimensions.

On the whole, the measuring system must allow simultaneous measurement and

fixation of different parameters at several points for the manifestation of a time

connection betweon them, and be, insofar as posseile, simple in operation and in-

sensitive to mechanical, thermal and electrical external influences.

The main difficulty in the creation of such equipment consists in the satis-

faction of all, or in any casesof the majority of these requirements. For ueasuru-

ment in the flow core of rapidly varying total stagnation pressures and of static

pressures and angles, in the Moscow Power-Engineering Inst. a number of quick,-respons,
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heads with tensometeric transducers were developed; one of them is depicted in

Fig. 10-U1.

Actually, the head of such an instrument is a short pipe of total stagnation.

The transducer of pressure into omf is located in a small box 3. of streamlined

form fastened to the lens-holder. The pulsating measured pressure is brought under

the diaphragm 2, on the reverse side of which is wound the spiral tensometeric sensor

of resistance 3.

The diameter of the mica diaphragm to nearly 5 mm; thickness is 0.012-0-.050 ms.

The spiral tensometeric sensor with a diameter of 3 inm is wound from constantan

wire, 0' 0.03 mm, and has a resistance of - 100 ohm. A strain gauge is included

in the bridge input circult of the measuring device, which consists of a stabil-

ised power supply, an electronic multichannel amplifier and an oscillograph.

The described heads with strain transducers have fully satisfactory character-

istics. This is illustrated by the oscillogram presented in Fig. l0-ll,b, which

was obtained on a special calibrating installation, which gives trapezoidal pulses

of pressure of various magnitude• and frequencies.

As was shown above, one of the most important characteristics of a head with

a transducer is the natural frequency of oscillation of the elastic system.

Increase of the natural frequency of the transducer and increase of its re-

lative sensitivity may be attained by replacing the tensometric principle of measure-

ment of strain in the diaphragm by a capacitive principle, which does not require

placing on the diaphragm of any kind of additional mass.

In the Moscow Power-Engineering Inst. have been developed samples of quick-response

heads with capacitive transducers. The basic circuit of the converter is clear

from Pig. 10-12. As a mobile electrode of the converter .)erves a mica diaphragm 1,

covered with a thin layer of aluminum. The fixed electrode 2 is completely isolated

from the housing. The operating diameter of the diaphragm is 5 mm. The amplifying

t0 _



electronio oircuit is conveniently located direotly on the holder of the heads sncae

this prevent* errors arising from the variable capacitance of connecting wires,

e

Fig. 10-11. Tensiestrzi head for manure.
mnt of stagnation pressure and results of
calibration.

Fig. 10-62. Head with capacitive tranesormer.

For neasurement of variable pressures on surfaces of utreamined bodies

inductive transformers are very widely applied.

In spite of the relative complexity of their desigrn, they are convenient due

to the fact thatj with the observance of certain conditions, they can operate

* directly on the loop of the osiflograph withiout electronic Wsplifiera.

Inductive transformores allow us to meanure constant as well as variable
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component pressures &,' .e especially suitrAhlo when many-point remote measurements

are necessary.

AA

PA,

b)

0

Pig. 10-13. Heads of eslectrothermoanemnmeter-
(a), fundaental electrical circuit (b) and
an osoillogram of the pulsation of velocity (a).

At the present time, the best developed method of investigation of non-steady-

state gas flows in thermoanemometry. A comtemporary thermoanemometrio installation,

allowing the determination of pulsation of velocity, the magnitude and direction

of velocity and the temperature of the investigated flow, is quite a ocmplicated

system, consisting of several heads, a measuring bridge, a speoial electronic

amplifier and ofcillographe.

The head of the thermoanemometer (Pig. 10-13,a) consists of a thin ( 0.0.01 to

0.02 mm) platinum or tungsten wire 1, welded to two nickel holders 2, which are

current conductors. 0
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There exist two main fundamental circuits of the measuring system of thermoane-

Oometera. In both cases the head RM (Fig. lO-13,b) is connected into one of the

arms of the bridge, whose remaining arms are made from resistances which are not

dependent on temperature.

The bridge, balanced at c - 0, becomes unbalanced upon the introduction of

the head into a flow with some velocity a. Balance of the bridge can be restored

either by increase of the current with the help of the rheostat Rs. or compensa-

tion of the change of resistance R. with the help of R2,

The first method is called "constant resistance.0 The more wide-spread is

the second mthod-the method of direct current.

During measurements in non-stationary flows, into the measuring diagonal

is connected an electronic amplifier with a special selected characteristic, which

allows, within definite limits, the compensation of the thermal inertia of the

filament.

O Thermoanemometers allow carrying out of experiments within a wide range ot

velocities and frequencies of pulsation of gas flows.

10-3. Qptical W~thods of Study of Gas Flows

At high velocities in the field of glow there appear significant density

gradients. The nonuniformity of flow in this case allows the wide application of

optical methods of study. In certain casem nonuniformities of the field are created

in the flow artificially by means of local heating. With such a method of visual-

imation optical methods can be applied also for subsonic flows of low velotiities.

Optical irkstrumnts are based on the use of the known properties of 1.ght rays,

whinh are deflected from their initial direction upon passing through a meLi•u of

variable density aid, consequently, variable refracting ability.

If n is the index of refraction of light rays at a given point of the Ajied,

then the value of density of the flow at the point is determined by the
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relationship

S sConst

which can be replaced by the approximate expression:

:.L --- -I - (o-,3.)P Pa

where a,, to are the index of refraction and density at a certain initial point;

usually these guantities refer to standard atmosphere conditions (t, - 00 C and
M1

p P 760 mm Hg).

From formula (10-1) it follows that the field of densities of the flow will be

determined, if we find by an experimental method the field of indexes of refraction

of light rays in the investigated region. Pressure and temperature can be deter-

mined, if two more equations, connecting the parameters of flow p, p and ; are known.

For this purpose serve the equation of state and the equation of an isentropic

process$

Differentiation of equation (10-1) leads to the evident relationships:

* 9ofl Op I

and
0'., 0p. 0' A '

where K is a constant.

Hence we conulude that, depending on the principle of action and the setup of

optical instruments, either the first or second derivative can be used for direct

measurement of density. For qualitative study of flow all instruents are useful,

without regard to what method is used to determine the field of densities during

quantitative investigation. However, the accuracy and clarity of the obtained

qualitative picturo of flowo and also the accuracy and labor-consuming character of

processing of the results of qualitative analysis essentIally depend on the setup

and design of the instrument.

The simplest are optical system in which the shadow method of determination of

densities is used. The diagram of such a mechanism is shown in Fig. l0-14,a.

A diverging beam of light from source 8 passes through lens L and becomes parallel.

I I.. . .. • -'' m • •I ,l I I I iil, iln oli



The parallel beam crosses the air flow, in which model A is located, and falls

S on the screen or photographic plate J. During flow around the model there appear

density gradients. Thus, for example, if the flow line 1-2 crosses the bow shock

neao the model, then the density in the zone of intersection changes intermittently

(Fige lO-14,b). In this case - and if

In those points of the field, where ,>o rays of the parallel beam

disperse and on the screen a dark region will be formed. There, where ai•0. rays

converge and the illumination on the :ecreen is increased. At point 1 Fig. 10-4,b

dol'l3 0. and at point 2 op~ 4: 0. Hence, it follows that the image of

the bow shock for the model will consist of two lines, black and white located

next to each other. In the simplest case, the shadow method can be realized in

the diverging beam of light (without a lens). This method, simpler and cheaper,

finds application during the study of shocks in the flow,/

The other, the more sensitive and accurate optical instrument which allows

the measurement of the first derivatives of density, is based also on the shadow

method. In this instrument, rays, before falling on the screen, are focused to

a point, to which is brought a blade. In the presence of nonuraformity in the

flow, the point of focusing of part of the rays will be displaced and will hit the

blade, which does not prevent their further propagation. As a result, the picture

formed on the screen will have greater contrast than in the simple instrument

(Fig. 10-14).

Wide use has been received by mirror system of shadow optica. instruments.* The

most perfect is the instrument with a airror-menlscuss stem proposed by P'of.

V. D. Maksutov (Fig. 10-15). Frou the source, the beam of light passes th'ovgh

a condenser K and a slot D. The flat diagonal mirror S8 changes the direc lion of

the rays. Rays hit. the concave spherical mirror "2p which transforms the diverging

beva of light into a parallel beam. Spherical mirror 82 together with
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Fig. 10-14. Diagram of shadow method.

a dispersing meniscus lens LOwill form mirror-meniscus system.

This part of the apparatus, consisting of the illuminating assembly, mirror

S and lens L makes a parallel beam of light and is called a collimator.
2

The receiving part of the instrument is made up of the meniscus lens L3

spherical mirror S3 flat diagonal mirror S4p blade H, rotating mirror S * screen

I and photoattachment (D The rotating mirror S in the illuminating assembly

serves for control of focusing of the slot.

In order that the source of light, which must be on the optical axis of the

system, does not close the center of the field of the image, the optical axis of the

system is displaced to its edge. Therefore the system is asymmetric with respect to

the geometrical axis, which one may readily see in Fig. 10-15.

The main advantage of the nirror-meniscus system consists of the fact that

at identical candle-power, it has significantly smaller spherical and chromatic

aberrations as compared with the lens system.

Thus, in the considered system, the main subassemblies are the main optics of

the apparatus (mirror-meniscus), the illuminating assemblj, the actuating mechanism

of movement and change of the slot and focusing of the source of light and the

mechanism of movement of the blade with the photoattachment.

In the process of exporitmnnt, work with thi apparatun reduced to oporation

of t~h," j I•1w.i tin,r n n 7, till a t ..... '..- ,, ...........yIb' L l i ( ,
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Fig. 10-15. Diagram of mirror-meniscus instrument

of D. D. Haksutov.

photoattachment and the mechansim of movement of the blade.

As the source of light different illuminators can be applied, including the

mercury arc lamp, motion picture projection lamp, spark discharger and so forth. In

a number of cases the consecutive use of two illuminators turns out to be expedient.

During qualitative study of flow, the main problem consists of correct velection

of the degree of intensity of illumination of the field, which depends on the

dimensions of the slot, the position of the blade and the type of illuminator. The

highest intensity of illumination occurs for the maximum slot and withdrawn blade.

It is necessary, however, to remember that, with increase of the degree of

illumination, the sensitivity of the instrument decreases. Thereforn the region of

flow with small density gradients should be photographed &t small dimensions of the

slot and with the blade introduced into the beam of light. If the main interest

is the investigation of a system of shocks, then the dimensions of the slot are

increased.

The location of the blade relative to the studied object has an important

significance also. Depending upon the position of the blade, (horizontal, 1ertical

or diagonal) beams, passing through a nonuniform field and being deflected, oan be

stopped by the knife or, on the otherhand, pass to the screen. In the firsi case

* nonuniformity appears on the screen as dark, and In the second as light. Dc Minition

or the .nago thorerore in kopt tho nanio, The best ronul.t, arn obtainod vlhin thr'



edge of the knife is located normal to the direction of the maximun density

gradient. 0
Thus, the type of illuminator, dimension of the slot and position of the

blade must in each separate case be found by selection which depends upon the

flow reg'ime, the object and the problem of the investigation.

During quantitative investigation of flow, the blade turns out to be unsuit-

able, since it stops the beams and does not allow measurement of the angles of

deviation, which are necessary for determination of the field of refractive indices.

In this case diaphragming of the beam of light is produced by a thin filament. Such

a method of quantitative investigation with the help of the optical apparatus

received the name,"the method of filament and slot."

For direct measurement of the field of densities of the stream the optical

instrument known by the name of interferometer is applied. The principle of action

of the interferometer can be comprehended from consideration of the diagram pre-

sented in Fig. 10-16.

The instrument consists of two re-

L flecting mirrors 51 and S2 and two semi-

transparent mirrors P1 and P2 located at

the corners of a rectangle at an angle of

4 45 0 Let us consider at first the case

when the surfaces of mirrors are strictly

E parallel. The diverging beam of light

from source S passes through lens L and
- B becomes parallel. Rays of the p-all1el

beam are dividod during passage through

= '- the semitransparent mirror Pi1  Part of
Fig. 10-16. Fer explanation of
the principle of action of the the rays ACE' pass through the aemitrans-
interferometor. parent mirror and, being reflected from

Mirror S.1 nnd P, tr. , o tr,• o .•.ts ron "' t. 0 , I. 'I'V oT. ,h To°,,'l. l- rf. '' .•h ,•' , I',-
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reflected from P and S2 and, pasaing through mirror P2, strike the same point of

the screen I (trajectory of this beam is AEA'C'I). Reflection of the rays will

occur also at points C and B (rays CB and BD) and C' and B' (rays COBW and BOD')

of the semitransparent mirrors. These rays strike the screen at point K. Consequent4,

the part of the rays striking point I pass through the semitransparent mirrors

010 P2 ) once, but that part which strike point X pass through P, or P2 twice.

Therefore, at point K the intensity of light will be lower.

Since all four mirrors have parallel surfaces, the length of the optical path

(product of the trajectory of the ray by the index of refraction) of both beams

striking point I will be identical. In this case the screen will be evenly

illuminated.

The character of illuminance of screen abruptly changes if the mirrors (S8 or

S ) are turned by some small angle with respect to the axis perpendicular to the

plane of the drawing. In this case the length of the optical path of one of the

beams reflected by the corresponding mirror S1 and S2 and striking in point I

changes. As a result there occurs interference of the rays meeting at point I, due

to the fact that part of the rays extinguish one another, and there will be formed

intermittent dark and light bands* on the screen, located at some identical, distance

U from one another (Fig. 1O-17,a).

If, between mirrors PI and S31 is located the investigated field R, whose denuity

p differs from the density of the medium between P2 and S , then, due to the

change of the optical path of beam CE' the difference of path of beams CE' and EA'

will change. In this case the Interference bands will be displaced by ace distance

parallel to themselves (Fig. lO-7?,b).

The magnitude of displacement of the interference bands is determined

*Rays st.riking point K also interfere with each other; however, as it was
s'.),wn, due to the considerably smaller intensity of light at point K, the inter-
ference here will be weaker. By a small supplement to the design or the irstrument,
iA in potsible to exclude it.
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by

1 F P' (10-4~)0

where 1 and 1' are lengths of the optical path of the beam in media with densities

t and r' respectively.

Hence we obtain the difference of densities:

M

where m .- is a quantity depending on the conditions of the experiment:

the angle of rotation of the mirror, density pV and the refractive index of mdium n'.

"Values of ^n e and a are determined

in the course of the experiment.

In those cases when the investigated

a) field is characterised by a nonuniform

distribution of densities, displacement

of the interference bands will be different

on various sections of the screen; as a

/ 4 resuat, the bands will be curved. Thus

the lines of identical displacements of

Fig. 10-17. Schematic dia-
gram of interference spectrum. the hands of interference ( t/o - const)

correspond to lines of constant density (p -- 0' const) in the investigated region.

Thus, the principal of action of t•Ae interferometer is babed on measurement of the

differences of lengths of the optical paths of the light. The interference method

ollows a detailed investigation of the structure of flow in interblade channels of

cascades and with sufficiently high accuracy to determine quantitative characteristics

at all points of the field of flow.

With the help of the interferemeter, it is easy to establish the change of

thickness of the boundary layer along the profile, and also the position of points

of separation of the layer. This instrument allows us to separately determine

frictional. losses and edge and wavo losses in two-dJnvmnsonnl cnrmndes,
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Fig. 10-18. Interference photograph
of flow of gas in a turbine cascade
(experiments of Central Scientific
Research Institute for Boilers and
Turbines).

As an example, in Fig. 10-18 is presented an interference photograph of flow

in a turbine row. Comparison of the pictures of the distribution of pressures along

the contour, obtained by pneumometric ard interference methods shows good agreement

of results of the optical measurements with the data of direct measurements.

The design of the interfezometer by means of a small addition allows us

simultaneously to obtain interferenme and shadow photographs of flow spectra. With

this goal, it is possible to introduce one more semitransparent mirror P3 (Fig.

10-16) into the design of the instrument. Then part of the rays reflected by the

mirror P3 , will give a shaaow image of the spectrum on the screen at point T. The

other part of the rays, passing through mirror P3# will be reflected by mirror P2 Just

as in the usual, design of the instrument.

10-4. Installations For Investigation of Cascades

Under Static Conditions

Tests of st4itionary rows are carried out on installations of various types,

whose design and construction are. determined by the problems of the investigation

*0 and the adopted method of experiment.
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Tests under static conditions, as already was indicated, are carried out for

the purpose of comparative evaluation of cascades and for study of properties of

the physical process of flow around different cascades. Obtained experimental

characteristi-is in certain cases can be used also for thermal design of the stage.

For determination of characteristics and for investigation of the structure

of flow in the cascade various methods of aerodynamic experiment are used. In

these are included the following:

A. Methods of study of the spectru! of flow, including: 1) measurements of

the field of flow in characteristic sections of the cascade by heads and also by

various electrical instruments which establish the total and static pressure, total

stagnation temperature, direction of velocity at the point; 2) study of the field

of density by optical methods (shadow and interference); 3) visualization of flow

by means of mixing of foreign particles.

D. Methods of study of flow at the boundaries of _rofile. including: 1)

measurement of temperatures and pressures on the Surface of the profile of the

blade by means of draining ; 2) study of the velocity profile in the boundary

layer with the help of micro-tube or electrical instruments; 3) visual investigation

of the structure of the boundary layer on the profile by means of coloring the

murface of the blade.

C. Methods of force measurement including: 1) determination of the total im-

pulse of flow after the cascade; 2) determination of forces$ acting on the cascade as a

whole and on an individual blade in the infinite cascade with the help of special

scales.

D. Methods of study of non-steady-state processes, connected with flow around

a separate blade or cascade. Oscillations of a streamlined profile are investigated,

also pulsation of velocities, pressures and temperatures of the circumfluent flow.

Without dwelling on the comparative evaluation of different methods of

investiation, let us note that, thoeir .miitonno',no uic in one ,i.n.t.n.flton is
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unpractical. Realization of such a requirerent makes the installation universal,

* but it is structurally tou complicated, expensive and inconvenient in operation.

It is necessary to consider that to the diagram and design formulation of

the installation are presented additional requirements, stipulated by design para-

meters of the investigated cascades and gas-dynamic parameters of flow before the

cascade and after it. Thus, in the investigated cascade there can change the form

of the profile, pitch and height of tha blades and the angle of their setting..

The most important gas-dynamic parameters are the angle of the flow onto the

cascade, whose change must be anticipated in any installation, velocity of flow

after the cascade Ha (or at the inlet into the cascade m ) and Reynolds number Re.
2 1.

Also in a number of cases it is necessary to provide for a separate study of the in-

fluence of compressibility and viscosity on the characteristics of the cascade by

means of independent change of numbers M and Re. The range of change of regimes

is dictated in the final result by the given conditions of the experiment and the

requirements of practical modeling.

Among the latter, except for the obvious conditions M - ides and Re - ides,

are included the special requirements for the organisation of flow before the cas-

cade. In certain cases it turns out to be necessary to introduce artificial

turbulluation of the flow, in others--to thoroughly equalize the flow at the inlet,

and also to provide the conditions of flow around the infinite cascade.

The statements above show that the fundamental diagrams and design forms of

inst&allaUtions for static tests of cascades can be classified according to objects

of investigation (installations for test of flat or cylindrical cascades), according

to conditions of testing of cascades (installations with open moving part o~r with

chamber of counterpressure for testing in uniform or turbulent subsonic or super-

sonic flow at the inlet) and according to the adopted method of investigat:,on

S(installations for detailed study of aerodynamic fields, for determination of forces,

actinf., on a profile in tho cascade for inventi.•ation of cascades by optie mnt~hos,

i''• 1 I I I 07-.-i) ... i - -T - .. [.] 'i-T



Fig. 10-19. Fundamental diagram of wind tuine I for
static investigation of flat and annular casaades.
I-air inlet; 2-annular chamber; 3-grid; 4-meter of

P. I 5-meter of m.p:; 6-calibration mechanism; 7-
bearing• 8 and 13-shell; 9-11-seal; 10-investigated
cascade; 12-ooordinator; .4 and 20-exhaust chamber;
15-detachable flange; 16-nozzle of flat bank; 17-
flat bank; 18-field of coordinator; 19-diffuser;
21-shaft; 22-thrust bearing, @

It Is possible to classify installations also depending upon the applied working

fluid (steam, air, iRteam-air and others) and the method of organization of the

working flow (installations with excess or atmospherio inlet pressures ejector iz-

stallations, steam installationes, operating with a condenser).

Laboratory stands should, as a rule, include several experimental installations.

In this case the number of problems solved on each installation im limited by its

design, adopted by the method of investigation and maximum values of the parameters

of the working fluid.

We will consider the basic schemes of certain testing installations. In Fig.

10-19 is presented a diagram of a wind tunnel, in which is provided the possibility

of simple replacement of moving parts. Air from the compressor moves into the

tunnel through the duct I and arrives in the annular chamber 2. Passing through

cone 3, which has a large number of apertures, the air poes into the recoiver and

flown around the invontirat.ed annu.rr rr¶' .10. Tho n••owr'.:rvy (c-Uortion of flo nt



the inlet into the investigated row is created by lip with guide cascade a.:

The investigated annular package is fastened to a flange of the shaft 21, in-

stalled in the ball support bearing 7 and support-thrust bearing 22. Axial force

through the bearing 22 is transmitted to the elastic element 4, and torque from

the shaft on the housing is transmitted through the symmetrical elastic elements 5.

On the elastic elements are fastened wire strain gauges, with the help of vhich

torque and axial force are determinto orith SuVseicient accuracy.

Row 10 Is supplied with a seal "• into the chamber U. of which moves air under

pressure equal to the pressure it wie receiver. Thus, overflow from the receiver

into the exhaust chamber is removed and the flow passing through row 10 is equal

to measured flow through the duct 1. Such a determination of flow is necessary

with the application of a method of force measurement. For increase of the accuracy

of measurement of M,, and p, there is provided the special calibrating mechanism 6.

For investigation of the field of flow before the row and after it are used

heads, moved by an automated transversing gear 12.

During investigation of the annular row, flange 15 is absent and air is

expelled into the exhaust box 20.

If investigations of rows in a flat bank are necessary the annular bank 10O

8, 13 and seal 9 are removed. Flange 15 is installed and on it the flat

moving part of the needed design with nozzle 16, the investigated row 17, the

transverse gear 18 and the diffuser 19.

Moving parts for the investigation of flat banks have different design formula-

tions. In Fig. 10-20 Is presented the general form of one of the moving Tarts for

the flat row.

Here the upper wall of nossle 5 by bolts 6 is immovably fastened to the housing

3 so that its trailing edge coincides with the common axis of the two dis)s 8, 0.

Disks 8 with the help of inserts 7 are immovably and coaxially fastened tctether.

Tho loi.mr wall of nonzln 4 by slidinp kays 10 and acreew 1. is fastened :,o verticon

SEE



slider 1, fastened with housing 3 by screw 2.

Mov•ing wall 4 relative to slider l and the slider relative to housing 3, it is

possible to change the distance OC within the limits of CB for a given angle of in-

let depending upon the length of the investigated bank. Change of the inlet angle

is produced by turn of disks 8 relative to the body 3. The coordinator after the

row, rigidly fastened with disks 8, ensures four independent moveyients of the nozzle:

linear movemont in directions or axes xys and turn around axis a.

Three of these movements (in directions x and L and turn around axis a), are

realised by electric motorsp remotely controlled by the operator by a given program.

On inutalletions of the considered type rows can be tested in uniform or tur-

bulent flow. 'For the purpose of artificial turbulization of flow in the parallel

section before the row it is possible to place the turbulising gride. Depending

upon the density of the grid (dimonsions of cells) and diameter of tubing during

constant speed of flow there can be obtained a different degree of turbulence before

the row.

Along with tho considered diagrams of installations which operate with excess

pressure, application of the diagram with atmospheric pressure in the prechamber

+7

Fig. 10-20. Flat moving part with variable
length of bank and automatic transverse gear
(transverse section).
1-slider; 2, 6 and l]-sorov; 3-hou inp; 4 rind
5-nozzle; 7-'m ,""rr, --dA..:l,; .



is found, including the installation of the ejector type. In such installations

* air is sucked into the prechamber from the atmosphere, is accelerv,,ted in a nozzle

and directed toward the row. Flow in the row is induced by the elector. Such an

installation operates with open flow and allows the attainment ot low pressures

after the row (and correspondingly low Reynolds numbers Re).

The presented short survey shows that the number of possiblt designs of installa-

tions for static tests of cascades is quite large. Selection of -n* or the other

design is determined by the problems of the experiment, and at th, basis of com-

parison of different set-ups considerations of economy and the reluirement of the

theory of modelling should be made.

Considering the earlier designations, it is possible to writ the expressions

for numbers M and Re in the known form:

C 
PC-d ili T1 L,, if, P

* where L is the characteristic linear dimension; p, T, o are paramera of flow in

the working part of the installation (after the row).

We will exclude speed o from the expressions for M and Re; thei

We will designate K as the coefficient of quality of the ins',allation,7

determined as the ratio of the power of the flow to the required p wer of the

compressor in the working section of the installation. Thie requir I power of the

compressor is determined by the formula

Nit+ - , "",KN Re','•'+' (10--6)

In equations (10-5) and (10-6) Kand KN are constants.

From formula (10-6) it follows that for identical parameters o: the gas ('p and

T) the dimensions of the installation in the working section are in, eased pioport-

isnal. to the ratio Re/M. With inoreuive of pressure, the dimensions of the iistallation

are reducedc. The power of tho Anotallat~ion is proportional to Milo,

..icro n.oo of.' th ? o C,,,l.c :t of c ,l'f1 y of lho n trA11,"t. 1 t), :'... i.t' .1 ,
1<,3



means of introduction of a diffuser, lowering of losses in the instaillation and use

of a compressor with high efficiency within limi of the operating regimen.

With the help of formulas (10-5) and (10-6) it is possible to compare two

designs of installations which are different in pr±.'ciple: with excess and with

atmospheric pressure in the prechamber.

During maintenance of the similarity simultaneously of M and Re, the power of

the installation with atmospheric pressure is significantly larger than the power

of the installation with excess pressure. At the same time, in the first case the

dimensions of the investigated models also incraase, which is ei-pscially important

during investigation of the boundary layer in the row. The installation with excess

pressure can operate with a chamber of counterpressure and with an open working

part. In the latter case, the technique of experiment is significantly simplified.

Consequently, in installations with excess pressure it is possible to carry

out a separate investigation of the influence of compressibility ard viscosity at

the time that in installations with Atmospheric pressure in the prechamber separate

modeling is unrealizable. For small values of M, the economy of both designs is

identical.

Thus, we see that installations with excess pressure in the preohamber in the

general case (similarity of H and Re) possess high economy and are more universal.

They have, therefore, the wider use. In certain cases, however, installations with

atmospheric pressure are more economical (if the influence only of compressibility

is investigated) and are the only possible solution. Only by such a design, for

example, can the steam-air installation with steam ejector operate.

10-5. &Wrimental Turbinet

Experimental investigation of the characteristics of a turbine or compressor

stape is carried out on special experimental turbines or compressors.

The stand of tLho oxporimontnl 'urbino con•r•.stm of' the tU•rbino, ,n elecltric or
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of measuring devices.

In certain cases the turbine and load mechanism are structurally consolidated.

In installations of high power the turbine and load mechanism are usually separate

and are connected by a coupling.

A general and very important requirement made of the load mechanisms of ex-

perimental turbines in the possibility of maximum accuracy of measurement of torque

on the shaft of turbine. The possibility of measurement of the axial force of the

rotor is desirable.

An experimental turbine, must provide the possibility of testing of stages with

different geometrical dimensions, reliable operation in a wide range of numbers of

revolutions, convenient and correct arrangement of the measuring equipment and

simplicity of assembl.y operations.

In principle it is possible to design a universal experimental turbine pro-

viding for tests of separate stages, as wIli as groups of them and work with differ-

ent revolutions, allowing testing of models of control, intermediate and last stages.

However design and operation of such a machine will be very complicated and its

creation is hardly advisa-ble. O~bviou~sly,, it is more rational to have several

experimental machines, each of which is oriented to the investigation of definite

types of stages.

In Fig. 10-21 as an example is presented the longitudinal section of a high

speed experimental. air-driven turbine, intended for detailed investigation of stages

with relatively long blades () - d/1 a 2,8 -4.5). The turbine is designed for

a maximum flow rate of air 0 4 4.5 kg/seo; T0 - 20000 at a maximum pressur'i po " 3

atm (abe) and n max 20,000 rpm.

The reoeiver part of the turbine 1 is welded without a horisontal splt. Air

moves through duct 2 into the annular chamber 3, from where it goes through por-

* oration 18 uniformly into air box 19. For organization of flow before thu guide

row 22 .erve the fairinpa 20 and the row of plates 21, which allow chanpo fi' the
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horizontal split. Air passing through tho working part is ejected through the

exhaust duct 37. The operation of the machine as an experimental turbine or wind

tunnel for the investigation of annular rows is stipulated by design.

The design allows measurement of torque and axial force on the rotor wheel,

as well as on the guide apparatus. The latter is fastened onto the hollow shaft 17.

The front ball bearing of the shaft does not receive an axial load. The axial load

1I received by the rear thrust-support bearing 13 and is transmitted through the

spherical insert 14 to the elastic element 15.

Torque is transmitted through the key 8 to the three-beam measuring coupling

9, two elastic symwetrical beamx of which 6 are intended for measurements of

torque and one rigid beam 10 of which is for calibration of the measuring coupling.

So that friction in the contacts of elastic beams of the measuring coupling

does not introduce error in the measurement of axial force,, the contact is realized

through the needle bearing in the spherical housing 5. Torque is transmitted

through the ring 12 to the worm pair 4. For measurement of torque and axial force

on the diaphragm electrical resistance tensometers glued on flexible elements 6

and 15 are applied.

The measuring device of the described machine allows us easily to conduct

calibration in the process of the experiment, and, if necessary, before each

measurement.

If necessary highly accurate mechanical or optical-mechanical. indicators can

be applied simultaneously with the tensometers for measurement of Al,, and p..

The rotor wheel 23 of the experimental turbine is made with a flanged attach-

ment. The shaft is flexible, rotating in special precision roller bearings. The

load mechanism is a single-disk hydraulic brake of cantilewvr construction. The

question concerning measurement of the moment of frictiton in bearings is specific

for experimental turbines. In a number of existing machines the moment in the

bearings in general is not ment•urod, and into the design there Is inrtroducnd rý

co .ro..t.ion, ob..r. .... i--- ... -- -in o. r. . I



Fig. 10-21. High speed air-driven experimental rirbine of the Moscow
Power-kngi~neering Thst * with measurement of A~Pand P, on the
diaphragm andl rotor.
I-vAn 25-houaing; 2-admission duct; 3-annular chamber; 4-turn actuating
unit of nozzle apparatus; 5-needle bearing; 6-slast~io beam of scales
.%, ; 7-toothed wheel; 8-key; 9-measuring c~oupling; 10-rigid beam

of measuring coupling At,,, ; 11-eccentric; 12-ring; 133-bearing; :L4-
zpheric~1 insert; 15-elastic element of scales; 16-seal; 17-shaft of
diaphragm; 18-cascade; 19-receiver; 20-fairings; 41-guide row of plates
22-nosule apparatus; 23-rotor wheal; 24-hatch of transverse gear;
26-floating bushing; 27-bushing; 28 and 36-chambers; 29-annular chamber;
30-brake disk; 31 and 32-brake housing; 33-feed channel; 34.-induction
Pickup; 35-drain; 37-exhaust duct.



turbines such a method is not permissible, since the momont in the thrust bearing

de",nds on the axial load, and, consequently, also on the operating regima of the

turbine*

In the experimental turbine (Fig. 10-21), the housings of the journal and journal-

thrust bearings are distributed in the split "floating" bushing 26. In the non-

detachable bushing 27, immovably connected with the housing in sections AA and BBE

are four symmetrical chambers 28,each fed through throttling Washers with co)reassed

air with a pressure , .6 at= (&bs), from the annular chamber 29. In'operating conditions

due to the difference of gaps between bushings 26 and 27 above and below, the pres-

sure in the upper chambers 28 will be less than the pressure in the lower chambers

36. The difference of pressures, directed upward, under determined conditions will

balance the weight of the construction included in bushing 26, and will force it

to "float.%

The main load moment. from the disk of the hydraulic brake 30 is transmitted to

the housing of the hydraulic brake 32, rigidly joined with the "floating" bushing

26. Therefore moments of bearings anci load moment of the disk of the brake are

added and are balanced by the moment of the measuring device applied to the housing

32. Thus, the measuring device measures the sim of three moments: moment of the

journal bearing, moment of the journal-thrust bearing and moment on the disk of

the hydraulic brake. The moment developed as a result of friction of disk 23 against

air, is not considered by scales, but can be determined with necessary accuracy

by means of. calibration.

The axial force of the rotor wheel, transmitted to the "floating" bushing through

the journal-thrust bearing, is measured by a special measuring head.

Water in the hydraulic brake moves by an open strea. into the feed channel

33 and departs through the drain valve 35. The tachometer, revolution counter

And automatic safety device in the dencribed machine aro electrical, operating from

the general induction data Pickup 34.
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during work without & wheel a special tnansverse gear with an autosatic electrical

* drive installed in the hatch 24 is applied.
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APPenDIX

1. Table of gas-drinaaa functions for k = 1,4 and k - I.S

2. Shock wave diagrams for k - 1.3 and k 1 1.4
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0A.-DYTNAC FUNCTIONS FOR k 1.3

-- - .1 1 - - a.I

0,02 0,0008 0,9008 0,9090 0,03187 1,072 0,00722 0,00023 - - 0.01856
0,04 0,0091 0:9003 0,00W 0,08300 1,072 0,0144 0,00D90 - - 0,0:17300,0M 0,9080 0,9%85 0,0005 0,00546 1,072 0.0217 0,00203 - - 0,05500
0,08 0,0004 0,0072 0,9002 0,1271 1,072 0,0280 0,00361 - - 0,07463
0,10 0,0944 0,9007 0,0087 0,1381 1 072 0.0361 0,0056:1 - - 0,00331
0,12 0,9919 0.0037 0,9981 0,1900 1,071 0,0433 0,00800 - - 0,11200
0,14 ,09890 0,0015 0,0074 0,2212 1,071 00500 0,010n8 - - 0, 1107
0,10 0,08nn 0,0988 0,0067 0,23,1 1:071 0,0378 0,014:11 - - 0.1404
0,18 01,018 0,90A0 0, 0938 o, 292 1,070 0,1l0,1 0,01906 - - 0, I02
11,201 0,0770 0,0927 0.00-18 0,3171) 1,070 0.0722 0,02222 - - 0:1870
0,22 0,9720 0,0791 0,99317 n.3-32 1,009 0,07 0,02070 - - 0, 203A
0,24 0,0979 0,9752 0,9925 0,3'729 I ,064 0,0807 0,03175 - - 0,2246
1,20 0, N12:1 0,19709 01,0912 0,4022 I ,rvA 0,093 0,03710 - - 0 24O15
0 ,8 0,,,3111 0, 9663 f, 9i09 0,4311 I ,01^7 0,11011 0,04282 -- 0,2024
0:,311 0,0501 0,0614 0.088: 0,1114 I, 1,00 O, 0 1 08 0,04801 - - 0, 2814
0,:12 0,09,311 0, fin , 100,,• 01,48-3 1,01)35 0, 11Al 0,1156,13 - - 0,o 1100U
0,34 0,9:10:1 9363 0,930c , f),mImw 1,110-1 1), 1279 0,06211 - - 0,3195
0,'m 0,9288 0,91 18 0, 9Il: I O,3423 I , 1)(:1 0,11(11) 0,00021 - - 0,3:186
(),m8 0,0209 0,9:1•6 01,0412 O,rllx: 1,002 0, 1372 0,0n7(140 - - 0,3577
11,40 1,01,7 1 ,(v0:911 n. mil I 0,341 I A1 0,14-14 0.,0.4-30 - - 0, :7-0
o),.12 11) w10 0,0211:1 0,0770 (3,11101 I ,(ollo) 1, A17 0,01220 - - 0,3:962
0,44 0:, 931 O,0,1 1),0717 1),0131;. I 1,0r0 n,I -r-18 (),1 I" -- - 0,4156
04,16 3,8831 1• .) 10ni (,971-1 0,111177 I,1137 I1, 111611 o.1111,4 -- - 0 ,4:H10
!l,.1'4 o,87H111 0,8:3 1),(1)f0!)! I 11,1 I ,031,41 011, 17,A ( 11711 - 0), 4 ,10
o,.0 lI,,4 2 oI,,4! 0,0( , 70,71:1:1 I ,' 0,5 1 811,A 4. 0), ,215 - - (0,17-11

I,32 I 0I ,,s'8M 111011", (0, 71': 11 I ,11;• 01, 1 7,4 1), 1,M1i31 -- -- ,,1337
11,.,,l ,,1,tl,). 0,8784 l ,i+0,96210 0, 7316 I I',0,2 U, I ono3 U, I, - -, 0,01:1,'
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TO4,- 91 ' I1 I

),0 6,8:1434 0,8700 0, 0501 0,77061 1, 'W 0,2022 0, ,1542 - - 0,5332
0O, m 0,82M3 0),8ilO 0,9561 0,70)58 ,049 0,2U95 O, 1137 - - 0853 1
1t,14M 0,8119 O, t49 10 ,),95:101 0,8145 1,047 0,2147 0 , 1733 .. 0,5731
O,4)2 1 0,1(112 0,8424 0o.199) , 04,..12 1,0,115 0 ,220 0, 018,) - 0,5932
0,04 0,788: 1 ,u8329 0,9100 0,8 l 1O: ,043 0,9:0 I 0, 1028 -- - O1) .1,
0,:W 0,7760 0,18229 00,-13:2 0,80:1l I ,I041 0,238-1 O,4.20 -- - 0 0,1337
0,411I 0,763:17 10,0127 O,':v'l.7 O,8O1 I .():1) 0.24•0 , , 2 12, 1 0,0541
I1,71) 0},73 11 412.1u I 0,0:3I O, 0,84 ,0 ,44:•18 0,252'4..,2221 -,- 0.0747
04,72 (),7:1,s.1 0,7910 0 ,9:1421 1),iN fl I ,1)., 5 020 O 0 2C 1 -- _ ), { 0,6953
0,7,1 0,72.)5 53 1),7811 0,9280 0,21 I I :I 1 O033 0,2672 02,119, 0,7161
01,76 0,712,2 0.770.) 0,9-,17 ,1:1,27 1,1:1 0 0),2745 0,25 14 o - 0, 770
)0.78 0,06184 0,75111 0,910(0 0,9,43-1 1.021) 0,2147 0,2610 - 07WO

01,m) 0111811 0,178 0, 1) 103 0,9,533:5I ,0127 ), 2188) 0,2705 -- - 0,7792
0,,2 .,)4I7 1 0,o734.4 ()'2mu 44,14,22 1,0241 0,V901 0,:.700 - 01 481,16
0,84 0:,l15m 1 0,72401 0, 0,1470-2 , 102 4)1,1U 0,2111 - - 0,8220
o), n 11:71310 0,1N1('5 0,9771 1,019 0,:0406 02.- - -2 0,H-137
0, mm 11,41304 0I,70412 O,'n(!4 I), 0),; 13 1I017 f),317s 0,3070) .... 0,165
O,114 0,014111 (I4,4i8) ( 4),891:4 0,1048 41 ,),I o,',12,•o O,',11 -- - 0,8S74
01,92 0,611213 0.6771 1,I . )0 (1,)I142, ,11011 1),3:1323 0,32:1,i - n 4),t)1
,141 U 11,,112 0,.444,24 40 4 ,,7 1), (414Is ,,0014) I ,0:1i339 (P 3320 - - 4 4,9.11 0

4I,14'4 1),57141 0:1532FI 0,M71l4 11,.90S2 I , W O ),34117 0,,1444414 - - (4,1h5i4
44,14,8 o,5r1II 1101 04,0717 0),(1900 I 1, ()(),:I O, 9 0,,475• .- 0,0771
I ,ANt) ),5.4-17 0,61"M0 (,114, 4 .0)( I 4.,I0 0,34112 I), I ,, 0' 0. I ,1110(m)
II42 w 4,5:,15 O,41,0 44,81•43,: o 0,0(4114, 0,9970 0,36184 0,36(10 77047 O GR0 1.0 1231
I,.01 107, 0471 , , 0,02 18, i), (4),12 0,0 11039 0,31750 01,,3093: 72*521 0'"M0 I .04
1,111- 44,5w, o4.wI -, I), 544 1 0,944144) 0,1OV)17 0,43828 0j,47143• 09I0' 00'55 I ,'0119
I OK 0,4801 04,57119) 0,8,7{ U 9028 0,0874 0,39W9 0,3(0, 0061 1025 I ,091

1,11) 1), ,1r75 0, i 11 0,H,422 0.,(9647 0,,1411 0397.1 0,) , 858 0102f01' I 6'11 1,118
1,12 01, ! 11 I 4,51': () ),98:18 U, 94'07 0,4015 03000 6O 10070 20251 1,142
1,1 1 0,4471 0.,'118 0 8301:105 ( 0)740 01,19773 0,4117 0,395n 6910y 2`5' 1 ,103I,'1M 0,43:331 ), ,2 U,82.15 44, 17,17 3 ,14737 0 1 41 H1O 0,44061 57405, 3-281 , I 911,18 4). 4114N, I 4,5127 41,I8,1 O(,1O4 (0 0701 0,4262 0, 40):5 551180 4'019 1,210
I,) 0.4)0,1 4,491O"4 1,8122 0r,05581 U91| 6 ,4:, I,43 04 406H 53:0380 4052, 1.242
I "j-12 (),m125 I4, 4I74) 4),8(I,9 0,) 1) 107 0,01127 O, 4-101 0, 407 82)06 P'370' 1,2117
1,2.14 41,37(41 1(,.17.12 42,70)-4 4),I:1744 O4,1454 (4,,.1571 lo,.11-11 oo:9 , 1 W27 ' 0 ,2(1 34 ,'46J 4414 1 ,44l,9 O,,l1I1 0,7'1214 ), 44 O,1444 O4,94,(4 (),,,55l 0,,l.1t4 ,4)'• l4i' 7°08, ,:tIu
I,28l 0,'r,5', 14), ,I•47 (0,7843 01,9152 ), 41,95 I)441 44,,i!:i o,,Il(r5V5 -17'5'9 71.2' 1,3.1;
4,344 l)'*mm414 1), 444110 ), 7 i( i , 0,14:12 o,0.40 o , I1(4I n . I, ,4113 460--11, 8014, I1 373
I, 32 t,3272) 44,4t:14 0,7727 t,SN)S 0,0 1.27 0,,717117 0.170) .45u351 09832 , 490

,:11 0,: 1.17 I0, I l 1)i , 761"8 0,877:3 0,0)1, 440,4 O, :1) 0,4170 ,I11"'27' IO" 16 I 1 42d
I'.4 4,44m4 o4148 (I 447ri8 (3,M63-1 ) 93113I 0, (4912 U, 11 6A4 4:1023' 110180 ,.4t'16I,:3 11414 0,311•0 t4,7514 0I,8 180 44,112147 1), 4VA 0,415,5 ,I2,',t 126011 41,484
I, III 0, 2782 0),37M8 44,7111 1),833:, 0,1)211'- I), n)o511 0,1.1111 ,I 1 ".14 13:17' I 513:
1,42 44,241115 013,:40116 0 ,73470) 0,,4,2 o',9)44l 4),,I , 0,,1121 ,I120' 14 0, 1,82
1, I 0I 44,25;) 110 11!, .),7294:3 o4,80204 11,!)11 ),4 o•01 U9,41107 394'31 14:512h ,572

,,441 (,'2,:m 0,; 7 40,7 1 0,78•51 44,14112 ! ), n2731 44,J(I0, 3813;17' 15 500 1 1,t102I, .-, 0,V);I7 11,: 12,18 (,, 4 ,71 -H 11,71183 0, f 0 1 1:1 0,5.14 -1 ,40:3-1 :37'4W' I66,1111 1 6:11:
I' Al1 0 1,2214 0l,:lI4.J 1,1741,11 44,75M41) 0,41I,-10. N, .I17 0),3099 36111'61 1444 11144.11,.52 0,)2 141 0,:'41014 04160, 4 0),73204 0,A1W3 O,, JIM) t),:3)j 2 :441 '448 3; S, 1• 0 I' 4(l14
1 ,-4 O,414 12 , ,21) 14'! 4o1(!I 7 |,71:.4 4 ' 14,.)14i2 4),5,1 2 0,3!M4-.1 3t15" ' 21^)5' " 72H
I ,l' 4,1,111 4I,,2s4l) 4)014•2I4 44,l1 4 8 0 ,o,,l1 1) , 54134 0,3412 3-4 139' 214 01' 1.701
, 1,,.1 ( ),4•!4 41,67-11 11,61771.) ,,2 1),8,l4i 4,5M74)44 o),: 17!5 :15 ',313 22'0,A' 1,791
IW) 0,17114 1),21141 0,11161 4,05141S i4.87-12 II,A77, )0,37 M 43 144') 213 15, I1,428

1,62 4), 0 627 0,217 1 1, G,-,177 4,4)i4-87 i, I'142 44 , 4 4,3: 7) :12'18.' 2 ,1"'II I M11:1,461 ,1: I13: 41,21" 169 11,1i-19 I)IJ11101 14,4•8 ) 0, .50124 3 ) ,310i12 31 '47' ' 21"29' 1I ,m(4
1,16111 '4, 4,2 I 4I,4,4.4,'4 5 I I,, ,599 " 44,15214 IIf 448' 2O1 81,,1' o4 '148,41, ii, 4,18 11,24i5 0,113:14 o4, ,711" 0 ,-.4 1 0,)l4067 0,34454- 3041341' 27".17 1 .9,71
1,7o1 If, IS 7 I,1'2. i 0I , ), 112,4t ii, "5M1 iI 4,m 111i ; 11,I10i .I I ),:.0T331 21','.' U. 1 2 "-,1I
I,72 1 1,42.414 I , 44,i)4, 1 11,11 1 I ,,4(,1) I0,6,141o l ,,0,6212 0,34292 I 21 I' I •0 17' 2,017
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1,74 0,1134 0,1874 0 6051 0,5190 0,8342 0,6284 0,3207 28037 31O13' 2,0861,76 0 10062 0,1781 0,9o00 0,4900 0,8279 0,0356 0,3119 2860:11 32*271 2,1261,78 0,09922 0,1691 0,5807 0,470 081214 0,0429 0, 3028 2729' 33*45 2,1071 ,80 0,01250 0, 1603 0,5774 0,45118 0U$149 0,O501 0,2936 26858' 35'04' 2,2001,82 00718 0,1517 0,5680 0,4,100 0,8082 0,61173 0, 2P.41 20'220 36'24' 2,2521,84 0,08007 0,1434 0,5584 0,4204 0.8J014 0,0045 0,2744 ba*40, 37'331 2.206
1,86 0,07424 0, 153 0,584A 0,4010 0,7044 0,0717 0,20,13 25o17' 38053' 2, 3411,88 0,0 C 0 0,1274 0.6300 0, 3I, 1) 7873 0,11700 0,2515 2440' 40122# 2,3881,90 0,011:1.1 1194 0,r291 0:362d 0,781 0, 0802 02448 24 14' 41133' 12436IN 0,05840, 0,1123 0.,192 0,3441 0,7727 0609:14 0,2344 23*44' 4:1'06' 2,4851.94 0,05364 0, 1054 0,'0091 0,:3257 0,7652 0,7006 0.2241 23018' 44'141 2, 5381,96 0,04915 0,00851 0,4080 0,3077 0,7575 0,7070 0,2139 22144' 45M6 2,8•7
1,98 0,04491 0,09191 0,4887 0,2000 0,7406 0,71M1 0,2037 22'10' 47'041 2,6,4122,00 0,04092 OH,556 0,471,3 0,2727 0,7416 0,7223 0,1934 246' 48'251 2,6072,02 0...17?. 0,07040 0,4078 0,2M96 0,73:14 U, 72050 ,183.11 21017 40'52P 2,754'2,04 0,03:106 0,07:143 0,4872 0,2:3031 0,7'2MI 0,73118 0,17:12 20'4Y 41O14' 2,8132,06 0,0010i8 0,00804 0,4463 0,22:13 0,71116 0,74410 0,1632 21)"2 11 5245' 2,1675.',0 0,027:12 0,06271 0,4:57 0,2078 0,70 0,7512 10541 541(' 2,038
2,10 0,02-148 0,04762 0,4248 0,1028 0,6939 0,7584 0,1430 10'2(Y 55"53' 3,0042,12 0,02185 0,05280 0,41418 0,1784 0,(180 9 0,7656 0,1341 18051Y 57'24' 3,07:12,14 0,01912 0,00122 0,4027 0 164 4 0,6805 0.71290 .01248 1811321 680521 3,1452.I6 0,01718 0,041389 0,3915 015 11 0,6710 0,7801 0,1157 180106' 60'30, 3,219r2 18 0,01513 0,0:1)70 0,3o801 0,13S2 0,6CI12 0,•78731 0,10(60 17039' 62"151 3,9072,20 0,01325 0,01595 0,308? U, 1260 0,0512 0,7045 0,00-435 17,131 64-221 3,378
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